IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p9201-d993553.html
   My bibliography  Save this article

Application Framework of Multi-Criteria Methods in Sustainability Assessment

Author

Listed:
  • Paweł Ziemba

    (Institute of Management, University of Szczecin, Aleja Papieża Jana Pawła II 22 A, 70-453 Szczecin, Poland)

Abstract

In the contemporary literature on sustainability, one can notice an increasingly frequent use of Multi-Criteria Decision Analysis (MCDA) methods instead of classic sustainability indices. The MCDA method should be tailored to the specific sustainability problem and decision situation so that its results are credible and satisfactory for the decision-maker. Therefore, the following research questions arise: (1) which MCDA methods are most often used in sustainability problems, and (2) which methods should be used depending on the characteristics of a particular sustainability decision problem and its assessment. The aim of the article is to scientifically analyse the applicability of various MCDA methods in decision-making problems related to sustainability, sustainable development, and sustainability assessment. In the article, based on the analysis of the literature, a set of features has been developed that determines the possibility of using individual MCDA methods in sustainability problems. Then, the characteristics of 28 methods are presented and the framework for selecting the MCDA method for the purpose of sustainability decision problems is indicated. As a result of the conducted research, it was found that the most commonly used MCDA methods in sustainability problems are primarily methods based on arithmetic aggregation of criteria. In addition, fuzzy methods and fuzzy modifications of classical methods are used more often. Research has established that MCDA methods are more functional than classic sustainability indices. In addition, the use of MCDA methods in the assessment of sustainability gives much more flexibility than the use of classic indices. The proposed framework allows the decision-maker to independently assess the potential of using individual multi-criteria methods in specific decision-making problems related to sustainability. The framework enables the selection of an appropriate MCDA method depending on the defined needs of the decision-maker, resulting from the decision problem, its structure, and decision-making situation.

Suggested Citation

  • Paweł Ziemba, 2022. "Application Framework of Multi-Criteria Methods in Sustainability Assessment," Energies, MDPI, vol. 15(23), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9201-:d:993553
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/9201/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/9201/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carlos Henggeler Antunes & Carla Oliveira Henriques, 2016. "Multi-Objective Optimization and Multi-Criteria Analysis Models and Methods for Problems in the Energy Sector," International Series in Operations Research & Management Science, in: Salvatore Greco & Matthias Ehrgott & José Rui Figueira (ed.), Multiple Criteria Decision Analysis, edition 2, chapter 0, pages 1067-1165, Springer.
    2. Kumar, Abhishek & Sah, Bikash & Singh, Arvind R. & Deng, Yan & He, Xiangning & Kumar, Praveen & Bansal, R.C., 2017. "A review of multi criteria decision making (MCDM) towards sustainable renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 596-609.
    3. Paweł Ziemba, 2021. "Selection of Electric Vehicles for the Needs of Sustainable Transport under Conditions of Uncertainty—A Comparative Study on Fuzzy MCDA Methods," Energies, MDPI, vol. 14(22), pages 1-25, November.
    4. White, Leroy & Lee, Gregory John, 2009. "Operational research and sustainable development: Tackling the social dimension," European Journal of Operational Research, Elsevier, vol. 193(3), pages 683-692, March.
    5. Paweł Ziemba, 2019. "Towards Strong Sustainability Management—A Generalized PROSA Method," Sustainability, MDPI, vol. 11(6), pages 1-29, March.
    6. Diaz-Balteiro, L & González-Pachón, J. & Romero, C., 2017. "Measuring systems sustainability with multi-criteria methods: A critical review," European Journal of Operational Research, Elsevier, vol. 258(2), pages 607-616.
    7. Guitouni, Adel & Martel, Jean-Marc, 1998. "Tentative guidelines to help choosing an appropriate MCDA method," European Journal of Operational Research, Elsevier, vol. 109(2), pages 501-521, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaros³aw Brodny & Magdalena Tutak, 2023. "The level of implementing sustainable development goal "Industry, innovation and infrastructure" of Agenda 2030 in the European Union countries: Application of MCDM methods," Oeconomia Copernicana, Institute of Economic Research, vol. 14(1), pages 47-102, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tobias Witt & Matthias Klumpp, 2021. "Multi-Period Multi-Criteria Decision Making under Uncertainty: A Renewable Energy Transition Case from Germany," Sustainability, MDPI, vol. 13(11), pages 1-20, June.
    2. Paweł Ziemba, 2019. "Towards Strong Sustainability Management—A Generalized PROSA Method," Sustainability, MDPI, vol. 11(6), pages 1-29, March.
    3. Paweł Ziemba, 2022. "Energy Security Assessment Based on a New Dynamic Multi-Criteria Decision-Making Framework," Energies, MDPI, vol. 15(24), pages 1-18, December.
    4. Hottenroth, H. & Sutardhio, C. & Weidlich, A. & Tietze, I. & Simon, S. & Hauser, W. & Naegler, T. & Becker, L. & Buchgeister, J. & Junne, T. & Lehr, U. & Scheel, O. & Schmidt-Scheele, R. & Ulrich, P. , 2022. "Beyond climate change. Multi-attribute decision making for a sustainability assessment of energy system transformation pathways," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    5. Baumann, Manuel & Weil, Marcel & Peters, Jens F. & Chibeles-Martins, Nelson & Moniz, Antonio B., 2019. "A review of multi-criteria decision making approaches for evaluating energy storage systems for grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 516-534.
    6. Bartłomiej Kizielewicz & Jarosław Wątróbski & Wojciech Sałabun, 2020. "Identification of Relevant Criteria Set in the MCDA Process—Wind Farm Location Case Study," Energies, MDPI, vol. 13(24), pages 1-40, December.
    7. Ji Chen & Jinsheng Wang & Tomas Baležentis & Fausta Zagurskaitė & Dalia Streimikiene & Daiva Makutėnienė, 2018. "Multicriteria Approach towards the Sustainable Selection of a Teahouse Location with Sensitivity Analysis," Sustainability, MDPI, vol. 10(8), pages 1-17, August.
    8. Paweł Ziemba & Mateusz Piwowarski & Kesra Nermend, 2023. "Remote Work in Post-Pandemic Reality—Multi-Criteria Evaluation of Teleconferencing Software," Sustainability, MDPI, vol. 15(13), pages 1-20, June.
    9. Paweł Ziemba, 2019. "Inter-Criteria Dependencies-Based Decision Support in the Sustainable wind Energy Management," Energies, MDPI, vol. 12(4), pages 1-29, February.
    10. Aloini, Davide & Dulmin, Riccardo & Mininno, Valeria & Pellegrini, Luisa & Farina, Giulia, 2018. "Technology assessment with IF-TOPSIS: An application in the advanced underwater system sector," Technological Forecasting and Social Change, Elsevier, vol. 131(C), pages 38-48.
    11. Axel Lindfors & Roozbeh Feiz & Mats Eklund & Jonas Ammenberg, 2019. "Assessing the Potential, Performance and Feasibility of Urban Solutions: Methodological Considerations and Learnings from Biogas Solutions," Sustainability, MDPI, vol. 11(14), pages 1-20, July.
    12. Sebastian Fredershausen & Henrik Lechte & Mathias Willnat & Tobias Witt & Christine Harnischmacher & Tim-Benjamin Lembcke & Matthias Klumpp & Lutz Kolbe, 2021. "Towards an Understanding of Hydrogen Supply Chains: A Structured Literature Review Regarding Sustainability Evaluation," Sustainability, MDPI, vol. 13(21), pages 1-19, October.
    13. Endre Börcsök & Veronika Groma & Ágnes Gerse & János Osán, 2023. "Determination of Country-Specific Criteria Weights for Long-Term Energy Planning in Europe," Energies, MDPI, vol. 16(13), pages 1-15, June.
    14. Muhammad Riaz & Wojciech Sałabun & Hafiz Muhammad Athar Farid & Nawazish Ali & Jarosław Wątróbski, 2020. "A Robust q-Rung Orthopair Fuzzy Information Aggregation Using Einstein Operations with Application to Sustainable Energy Planning Decision Management," Energies, MDPI, vol. 13(9), pages 1-39, May.
    15. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    16. Ormerod, Richard J. & Ulrich, Werner, 2013. "Operational research and ethics: A literature review," European Journal of Operational Research, Elsevier, vol. 228(2), pages 291-307.
    17. Paweł Ziemba & Jarosław Wątróbski & Magdalena Zioło & Artur Karczmarczyk, 2017. "Using the PROSA Method in Offshore Wind Farm Location Problems," Energies, MDPI, vol. 10(11), pages 1-20, November.
    18. Ziemba, Paweł, 2022. "Uncertain Multi-Criteria analysis of offshore wind farms projects investments – Case study of the Polish Economic Zone of the Baltic Sea," Applied Energy, Elsevier, vol. 309(C).
    19. Paweł Ziemba, 2020. "Multi-Criteria Stochastic Selection of Electric Vehicles for the Sustainable Development of Local Government and State Administration Units in Poland," Energies, MDPI, vol. 13(23), pages 1-19, November.
    20. Ryszard Dachowski & Katarzyna Gałek, 2020. "Selection of the Best Method for Underpinning Foundations Using the PROMETHEE II Method," Sustainability, MDPI, vol. 12(13), pages 1-10, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9201-:d:993553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.