IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v27y2025i1d10.1007_s10668-023-03955-x.html
   My bibliography  Save this article

Socioeconomic vulnerability assessment of coastal villages and buildings along Andhra Pradesh East Coast of India

Author

Listed:
  • R. S. Mahendra

    (Indian National Centre for Ocean Information Services, Ministry of Earth Sciences
    Mangalore University)

  • P. C. Mohanty

    (Indian National Centre for Ocean Information Services, Ministry of Earth Sciences)

  • P. A. Francis

    (Indian National Centre for Ocean Information Services, Ministry of Earth Sciences)

  • Sudheer Joseph

    (Indian National Centre for Ocean Information Services, Ministry of Earth Sciences)

  • T. M. Balakrishnan Nair

    (Indian National Centre for Ocean Information Services, Ministry of Earth Sciences)

  • T. Srinivasa Kumar

    (Indian National Centre for Ocean Information Services, Ministry of Earth Sciences)

Abstract

Climate change is a global phenomenon that has enhanced sea-level rise and aggravated the prevailing coastal hazards that make coasts more vulnerable. The socioeconomic vulnerability of villages for the entire Andhra Pradesh state and buildings at the selected locations along the Andhra Pradesh coast is estimated to understand the level of risk due to exposure. This study attempts to understand the reality of grassroots communities/households and derive vulnerability indicators that affect coastal communities. In this regard, (1) the exposure index (EI), (2) coastal cumulative vulnerability index (CCVI), and (3) socioeconomic vulnerability indexes are calculated. EI is calculated based on oceanogenic multi-hazard zones (MHZ) estimated using the long-term extreme water levels, shoreline change rate, sea-level change rate, and high-resolution topographic data. The cumulative coastal vulnerability index (CCVI) and socioeconomic vulnerability index (SEVI) are calculated for all villages and buildings in the selected villages. A total of 16 socioeconomic risk indicators from the village census of 2001 and ten indicators from the survey at the building level are used in the study. The current study suggests 23 villages comprising 6000 households associated with 0.022 million people under the very high SEVI category. Four villages comprising 1000 households associated with 3000 people are in the very high cumulative vulnerability index category. Nineteen hundred eighty-five buildings in the selected parts of the study area had a very high SEVI. One hundred and forty-five buildings in the village chosen had very high SEVI. The brief policy interventions and alternate livelihood options are discussed in this paper. The decision matrix generated at the village and building levels will help decision makers identify the contributing risk indicators for each village/building for appropriate resilience interventions.

Suggested Citation

  • R. S. Mahendra & P. C. Mohanty & P. A. Francis & Sudheer Joseph & T. M. Balakrishnan Nair & T. Srinivasa Kumar, 2025. "Socioeconomic vulnerability assessment of coastal villages and buildings along Andhra Pradesh East Coast of India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(1), pages 2055-2082, January.
  • Handle: RePEc:spr:endesu:v:27:y:2025:i:1:d:10.1007_s10668-023-03955-x
    DOI: 10.1007/s10668-023-03955-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03955-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03955-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scott A. Kulp & Benjamin H. Strauss, 2019. "New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    2. A. Arun Kumar & Pravin Kunte, 2012. "Coastal vulnerability assessment for Chennai, east coast of India using geospatial techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 853-872, October.
    3. A. D. Rao & Puja Upadhaya & Hyder Ali & Smita Pandey & Vidya Warrier, 2020. "Coastal inundation due to tropical cyclones along the east coast of India: an influence of climate change impact," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(1), pages 39-57, March.
    4. Sanjit Maiti & Sujeet Jha & Sanchita Garai & Arindam Nag & R. Chakravarty & K. Kadian & B. Chandel & K. Datta & R. Upadhyay, 2015. "Assessment of social vulnerability to climate change in the eastern coast of India," Climatic Change, Springer, vol. 131(2), pages 287-306, July.
    5. Lee Cronbach, 1951. "Coefficient alpha and the internal structure of tests," Psychometrika, Springer;The Psychometric Society, vol. 16(3), pages 297-334, September.
    6. N. Sudha Rani & A. Satyanarayana & Prasad Bhaskaran, 2015. "Coastal vulnerability assessment studies over India: a review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 405-428, May.
    7. Neil Adger, W., 1999. "Social Vulnerability to Climate Change and Extremes in Coastal Vietnam," World Development, Elsevier, vol. 27(2), pages 249-269, February.
    8. Susan L. Cutter & Bryan J. Boruff & W. Lynn Shirley, 2003. "Social Vulnerability to Environmental Hazards," Social Science Quarterly, Southwestern Social Science Association, vol. 84(2), pages 242-261, June.
    9. Daniel Felsenstein & Michal Lichter, 2014. "Social and economic vulnerability of coastal communities to sea-level rise and extreme flooding," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 463-491, March.
    10. Gómez-Limón, José A. & Sanchez-Fernandez, Gabriela, 2010. "Empirical evaluation of agricultural sustainability using composite indicators," Ecological Economics, Elsevier, vol. 69(5), pages 1062-1075, March.
    11. M. Mohapatra & G. Mandal & B. Bandyopadhyay & Ajit Tyagi & U. Mohanty, 2012. "Classification of cyclone hazard prone districts of India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(3), pages 1601-1620, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sindhuja Kasthala & D. Parthasarathy & K. Narayanan & Arun B. Inamdar, 2024. "Classification and Evaluation of Current Climate Vulnerability Assessment Methods," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 171(2), pages 605-639, January.
    2. Xuchao Yang & Lin Lin & Yizhe Zhang & Tingting Ye & Qian Chen & Cheng Jin & Guanqiong Ye, 2019. "Spatially Explicit Assessment of Social Vulnerability in Coastal China," Sustainability, MDPI, vol. 11(18), pages 1-20, September.
    3. Yi Chen & Tao Liu & Ruishan Chen & Mengke Zhao, 2020. "Influence of the Built Environment on Community Flood Resilience: Evidence from Nanjing City, China," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    4. Aishwarya Narendr & S. Vinay & Bharath Haridas Aithal & Sutapa Das, 2022. "Multi-dimensional parametric coastal flood risk assessment at a regional scale using GIS," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(7), pages 9569-9597, July.
    5. J. Joyson Joe Jeevamani & P. Priya & J. Amali Infantina & K. R. Abhilash & Durga Prasad Behera & V. Deepak Samuel & R. Soundararajan & R. Purvaja & R. Ramesh, 2021. "An integrated approach to assess coastal vulnerability versus fisheries livelihood sustainability: Strategies for climate change adaptation in Sindhudurg, west coast of India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4011-4042, March.
    6. Saud Alshehri & Yacine Rezgui & Haijiang Li, 2015. "Delphi-based consensus study into a framework of community resilience to disaster," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2221-2245, February.
    7. Pritam Ghosh & Asraful Alam & Nilanjana Ghosal & Debodatta Saha, 2021. "A Geospatial Analysis of Temporary Housing Inequality among Socially Marginalized and Privileged Groups in India," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(3), pages 798-819, June.
    8. Noy, Ilan & Yonson, Rio, 2016. "A survey of the theory and measurement of economic vulnerability and resilience to natural hazards," Working Paper Series 19394, Victoria University of Wellington, School of Economics and Finance.
    9. Shine George & P. P. Anil Kumar, 2022. "Indicator-based assessment of capacity development for disaster preparedness in the Indian context," Environment Systems and Decisions, Springer, vol. 42(3), pages 417-435, September.
    10. Emily Fucile-Sanchez & Meri Davlasheridze, 2020. "Adjustments of Socially Vulnerable Populations in Galveston County, Texas USA Following Hurricane Ike," Sustainability, MDPI, vol. 12(17), pages 1-23, August.
    11. Piya, Luni & Maharjan, Keshav Lall & Joshi, Niraj Prakash, 2012. "Vulnerability of rural households to climate change and extremes: Analysis of Chepang households in the Mid-Hills of Nepal," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 126191, International Association of Agricultural Economists.
    12. Seunghoo Jeong & D. K. Yoon, 2018. "Examining Vulnerability Factors to Natural Disasters with a Spatial Autoregressive Model: The Case of South Korea," Sustainability, MDPI, vol. 10(5), pages 1-13, May.
    13. Sumit Panja & Sayani Mukhopadhyay, 2024. "An investigation of small and marginal holder farmers’ adaptation strategies to climate variability and its determinants in coastal agriculture: evidence from east coast of India," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(3), pages 1-33, March.
    14. Ilan Noy & Rio Yonson, 2018. "Economic Vulnerability and Resilience to Natural Hazards: A Survey of Concepts and Measurements," Sustainability, MDPI, vol. 10(8), pages 1-16, August.
    15. Zhe Huang & Emily Ying Yang Chan & Chi Shing Wong & Benny Chung Ying Zee, 2021. "Clustering of Socioeconomic Data in Hong Kong for Planning Better Community Health Protection," IJERPH, MDPI, vol. 18(23), pages 1-21, November.
    16. Yang Zhou & Ning Li & Wenxiang Wu & Jidong Wu, 2014. "Assessment of provincial social vulnerability to natural disasters in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 2165-2186, April.
    17. Eno Amos & Uduak Akpan & Kehinde Ogunjobi, 2015. "Households’ perception and livelihood vulnerability to climate change in a coastal area of Akwa Ibom State, Nigeria," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(4), pages 887-908, August.
    18. Le-Le Zou & Yi-Ming Wei, 2009. "Impact assessment using DEA of coastal hazards on social-economy in Southeast Asia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(2), pages 167-189, February.
    19. Deressa, Temesgen & Hassan, Rashid M. & Ringler, Claudia, 2008. "Measuring Ethiopian farmers' vulnerability to climate change across regional states:," IFPRI discussion papers 806, International Food Policy Research Institute (IFPRI).
    20. Sara Lindersson & Elena Raffetti & Maria Rusca & Luigia Brandimarte & Johanna Mård & Giuliano Di Baldassarre, 2023. "The wider the gap between rich and poor the higher the flood mortality," Nature Sustainability, Nature, vol. 6(8), pages 995-1005, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:27:y:2025:i:1:d:10.1007_s10668-023-03955-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.