IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i8d10.1007_s10668-023-03503-7.html
   My bibliography  Save this article

A mathematical model for the optimization of agricultural supply chain under uncertain environmental and financial conditions: the case study of fresh date fruit

Author

Listed:
  • Mehran Gharye Mirzaei

    (K. N. Toosi University of Technology)

  • Saiedeh Gholami

    (K. N. Toosi University of Technology)

  • Donya Rahmani

    (K. N. Toosi University of Technology)

Abstract

In recent years, due to the rapid growth of the world’s population, the demand for agricultural products and food is growing increasingly. Therefore, the agricultural supply chain optimization has been grabbed by researchers to reduce food security concerns. On the other hand, the production amount of farmers is affected by various factors, including environmental conditions. In this paper, a supply chain network is investigated by developing a Mixed-Integer Linear Programming (MILP) model to effectively improve economic objectives under uncertainty. Then, a scenario-based robust optimization approach is employed to deal with the uncertainty. One of the novelities of our paper is considering weather conditions and economic fluctuations in different scenarios. The effectiveness of the proposed mathematical model has been confirmed by a real case study of dates farms. Dates and its by-products have a significant role in GDP, job creation, export, and the creation of various packaging and processing. Moreover, three meta-heuristic algorithms including Whale Optimization Algorithm (WOA), Particle Swarm Optimization (PSO), and a hybrid algorithm based on them (WOA–PSO) are adapted to deal with the NP-hardness of the problems. Moreover, the parameters of the proposed algorithms are improved by the Taguchi method, and to achieve more exact measurements, sensitivity analysis is performed. Finally, the numerical results confirmed that the accuracy of the hybrid algorithm was between 1.9 and 2.8%. Therefore, this approach could be practical and efficient for solving large-sized problems. The obtained outcomes demonstrated that the planned model provides tactical considerations for the related managers.

Suggested Citation

  • Mehran Gharye Mirzaei & Saiedeh Gholami & Donya Rahmani, 2024. "A mathematical model for the optimization of agricultural supply chain under uncertain environmental and financial conditions: the case study of fresh date fruit," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 20807-20840, August.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:8:d:10.1007_s10668-023-03503-7
    DOI: 10.1007/s10668-023-03503-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03503-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03503-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anderson, Edward & Monjardino, Marta, 2019. "Contract design in agriculture supply chains with random yield," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1072-1082.
    2. Mogale, D.G. & Kumar, Mukesh & Kumar, Sri Krishna & Tiwari, Manoj Kumar, 2018. "Grain silo location-allocation problem with dwell time for optimization of food grain supply chain network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 40-69.
    3. Borodin, Valeria & Bourtembourg, Jean & Hnaien, Faicel & Labadie, Nacima, 2016. "Handling uncertainty in agricultural supply chain management: A state of the art," European Journal of Operational Research, Elsevier, vol. 254(2), pages 348-359.
    4. H. Grillo & M.M.E. Alemany & A. Ortiz & B. De Baets, 2019. "Possibilistic compositions and state functions: application to the order promising process for perishables," International Journal of Production Research, Taylor & Francis Journals, vol. 57(22), pages 7006-7031, November.
    5. Azenith B. Castillo & Dan Jerry D. Cortes & Caesar F. Sorino & Christian Kim P. Soriño & Muftah H. El-Naas & Talaat Ahmed, 2023. "Bioethanol Production from Waste and Nonsalable Date Palm ( Phoenix dactylifera L.) Fruits: Potentials and Challenges," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    6. M. Boronoos & M. Mousazadeh & S. Ali Torabi, 2021. "A robust mixed flexible-possibilistic programming approach for multi-objective closed-loop green supply chain network design," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3368-3395, March.
    7. van Berlo, Jules M., 1993. "A decision support tool for the vegetable processing industry; An integrative approach of market, industry and agriculture," Agricultural Systems, Elsevier, vol. 43(1), pages 91-109.
    8. Yu, Chian-Son & Li, Han-Lin, 2000. "A robust optimization model for stochastic logistic problems," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 385-397, March.
    9. Ge, Houtian & Nolan, James & Gray, Richard & Goetz, Stephan & Han, Yicheol, 2016. "Supply chain complexity and risk mitigation – A hybrid optimization–simulation model," International Journal of Production Economics, Elsevier, vol. 179(C), pages 228-238.
    10. John M. Mulvey & Robert J. Vanderbei & Stavros A. Zenios, 1995. "Robust Optimization of Large-Scale Systems," Operations Research, INFORMS, vol. 43(2), pages 264-281, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dayanna Rodrigues da Cunha Nunes & Orivalde Soares da Silva Júnior & Renata Albergaria de Mello Bandeira & Yesus Emmanuel Medeiros Vieira, 2023. "A Robust Stochastic Programming Model for the Well Location Problem: The Case of The Brazilian Northeast Region," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
    2. Behzadi, Golnar & O’Sullivan, Michael Justin & Olsen, Tava Lennon & Zhang, Abraham, 2018. "Agribusiness supply chain risk management: A review of quantitative decision models," Omega, Elsevier, vol. 79(C), pages 21-42.
    3. Hashem Omrani & Farzane Adabi & Narges Adabi, 2017. "Designing an efficient supply chain network with uncertain data: a robust optimization—data envelopment analysis approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(7), pages 816-828, July.
    4. Tsai, Jung-Fa, 2007. "An optimization approach for supply chain management models with quantity discount policy," European Journal of Operational Research, Elsevier, vol. 177(2), pages 982-994, March.
    5. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.
    6. Seyed Babak Ebrahimi & Ehsan Bagheri, 2022. "A multi-objective formulation for the closed-loop plastic supply chain under uncertainty," Operational Research, Springer, vol. 22(5), pages 4725-4768, November.
    7. Lai, K.K. & Wang, Ming & Liang, L., 2007. "A stochastic approach to professional services firms' revenue optimization," European Journal of Operational Research, Elsevier, vol. 182(3), pages 971-982, November.
    8. Yaser Taghinezhad, 2019. "Optimisation model for a chain logistics problem involving chilled food under conditions of uncertainty," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 29(2), pages 103-116.
    9. Pagare, Dewang & Biswas, Indranil & Agrahari, Amit & Ghosh, Sriparna, 2023. "A small farmer’s market choice in the presence of multiple markets: The Indian case," European Journal of Operational Research, Elsevier, vol. 311(2), pages 739-753.
    10. João Flávio de Freitas Almeida & Samuel Vieira Conceição & Luiz Ricardo Pinto & Ricardo Saraiva de Camargo & Gilberto de Miranda Júnior, 2018. "Flexibility evaluation of multiechelon supply chains," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-27, March.
    11. Golpîra, Hêriş & Khan, Syed Abdul Rehman, 2019. "A multi-objective risk-based robust optimization approach to energy management in smart residential buildings under combined demand and supply uncertainty," Energy, Elsevier, vol. 170(C), pages 1113-1129.
    12. Erfan Hassannayebi & Seyed Hessameddin Zegordi & Mohammad Reza Amin-Naseri & Masoud Yaghini, 2017. "Train timetabling at rapid rail transit lines: a robust multi-objective stochastic programming approach," Operational Research, Springer, vol. 17(2), pages 435-477, July.
    13. Cao, Yu & Yi, Chaoqun & Wan, Guangyu & Hu, Hanli & Li, Qingsong & Wang, Shouyang, 2022. "An analysis on the role of blockchain-based platforms in agricultural supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    14. Xu, Y. & Huang, G.H. & Qin, X.S. & Cao, M.F., 2009. "SRCCP: A stochastic robust chance-constrained programming model for municipal solid waste management under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 53(6), pages 352-363.
    15. Azaron, A. & Brown, K.N. & Tarim, S.A. & Modarres, M., 2008. "A multi-objective stochastic programming approach for supply chain design considering risk," International Journal of Production Economics, Elsevier, vol. 116(1), pages 129-138, November.
    16. Xie, Y.L. & Huang, G.H. & Li, W. & Ji, L., 2014. "Carbon and air pollutants constrained energy planning for clean power generation with a robust optimization model—A case study of Jining City, China," Applied Energy, Elsevier, vol. 136(C), pages 150-167.
    17. Aalaei, Amin & Davoudpour, Hamid, 2017. "A robust optimization model for cellular manufacturing system into supply chain management," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 667-679.
    18. Golghamat Raad, Nima & Rajendran, Suchithra, 2024. "A hybrid scenario-based fuzzy stochastic model for closed-loop dry port network design with multiple robustness measures," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    19. Shahparvari, Shahrooz & Mohammadi, Mahsa & Peszynski, Konrad & Rickards, Lauren, 2024. "How contraflow enhances clearance time during assisted mass evacuation – A case study exploring the Australian 2013–14 Gippsland bushfires," Transportation Research Part A: Policy and Practice, Elsevier, vol. 189(C).
    20. Masoud Hekmatfar & M. R. M. Aliha & Mir Saman Pishvaee & Tomasz Sadowski, 2023. "A Robust Flexible Optimization Model for 3D-Layout of Interior Equipment in a Multi-Floor Satellite," Mathematics, MDPI, vol. 11(24), pages 1-41, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:8:d:10.1007_s10668-023-03503-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.