IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i6d10.1007_s10668-023-03293-y.html
   My bibliography  Save this article

Assessing the combined effect of PV panels’ shading and cool materials on building energy loads in different climates

Author

Listed:
  • Roza Vakilinezhad

    (Shiraz University)

  • Navid Ziaee

    (Art University of Isfahan)

Abstract

PV panels are vastly used for sustainable electricity generation, while they can also help the environment by improving buildings’ energy consumption. The best placement for PV panels installation in buildings with flat roofs is the roof. When placed on a building's roof, PV panels affect the building's energy loads by shading the roof surface. However, the shading effect of PV panels could be different depending on the roof's thermal properties and surface materials. The combined effect of shading caused by PV panels and cool materials could significantly change the roof surface temperature, and the building energy demand. In light of the lack of studies considering this combined effect, the present study aims to evaluate the energy-saving effects of different roof materials covered with solar PV panels for a typical residential building in four cities with different climate conditions in Iran. Applying a simulation tool, Ladybug Tools have been utilized for determining the building energy loads and PV panels' power generation. The obtained results indicate that PV panels significantly affect the cooling load of the building, especially during peak times. The hottest city, Bandar-Abbas, benefits the most, with a maximum saved energy ratio (SER) of 3.4%, while the coldest city, Ardabil, has the least SER, 0.5%. Additionally, in cold and moderate climates, the highest SER occurs for the lowest R-value and solar absorption roof, while for hot climates, the highest SER occurs for the roofs with the highest R-value and the lowest solar absorption. Overall, the shading effect of PV panels becomes more significant when solar absorption is high, and the roof R-value is low. Despite the decrease in cooling energy load, PV panels might increase the heating load. Depending on the climate, this contradictory effect of the roof's thermal properties and PV panels shading should be considered in the design process of buildings.

Suggested Citation

  • Roza Vakilinezhad & Navid Ziaee, 2024. "Assessing the combined effect of PV panels’ shading and cool materials on building energy loads in different climates," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(6), pages 16201-16221, June.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:6:d:10.1007_s10668-023-03293-y
    DOI: 10.1007/s10668-023-03293-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03293-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03293-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eltaweel, Ahmad & SU, Yuehong, 2017. "Parametric design and daylighting: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1086-1103.
    2. Saad Odeh, 2018. "Thermal Performance of Dwellings with Rooftop PV Panels and PV/Thermal Collectors," Energies, MDPI, vol. 11(7), pages 1-14, July.
    3. Ramshani, Mohammad & Li, Xueping & Khojandi, Anahita & Omitaomu, Olufemi, 2020. "An agent-based approach to study the diffusion rate and the effect of policies on joint placement of photovoltaic panels and green roof under climate change uncertainty," Applied Energy, Elsevier, vol. 261(C).
    4. Firozjaei, Hamzeh Karimi & Firozjaei, Mohammad Karimi & Nematollahi, Omid & Kiavarz, Majid & Alavipanah, Seyed Kazem, 2020. "On the effect of geographical, topographic and climatic conditions on feed-in tariff optimization for solar photovoltaic electricity generation: A case study in Iran," Renewable Energy, Elsevier, vol. 153(C), pages 430-439.
    5. Cavadini, Giovan Battista & Cook, Lauren M., 2021. "Green and cool roof choices integrated into rooftop solar energy modelling," Applied Energy, Elsevier, vol. 296(C).
    6. Chila Kaewpraek & Liaqat Ali & Md. Arefin Rahman & Mohammad Shakeri & M. S. Chowdhury & M. S. Jamal & Md. Shahin Mia & Jagadeesh Pasupuleti & Le Khac Dong & Kuaanan Techato, 2021. "The Effect of Plants on the Energy Output of Green Roof Photovoltaic Systems in Tropical Climates," Sustainability, MDPI, vol. 13(8), pages 1-10, April.
    7. Wang, Yiping & Tian, Wei & Ren, Jianbo & Zhu, Li & Wang, Qingzhao, 2006. "Influence of a building's integrated-photovoltaics on heating and cooling loads," Applied Energy, Elsevier, vol. 83(9), pages 989-1003, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yadav, S. & Panda, S.K. & Tripathy, M., 2018. "Performance of building integrated photovoltaic thermal system with PV module installed at optimum tilt angle and influenced by shadow," Renewable Energy, Elsevier, vol. 127(C), pages 11-23.
    2. Jaykumar Joshi & Akhilesh Magal & Vijay S. Limaye & Prima Madan & Anjali Jaiswal & Dileep Mavalankar & Kim Knowlton, 2022. "Climate change and 2030 cooling demand in Ahmedabad, India: opportunities for expansion of renewable energy and cool roofs," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(7), pages 1-17, October.
    3. Chen, Junjie & Liu, Pei & Lin, Borong & Zhou, Hao & Papachristos, George, 2025. "The diffusion of prefabrication technology and its potential for CO2 emissions reduction in China: A combined system dynamics and agent-based study," Technological Forecasting and Social Change, Elsevier, vol. 210(C).
    4. Burillo, Daniel & Chester, Mikhail V. & Pincetl, Stephanie & Fournier, Eric, 2019. "Electricity infrastructure vulnerabilities due to long-term growth and extreme heat from climate change in Los Angeles County," Energy Policy, Elsevier, vol. 128(C), pages 943-953.
    5. Wang, Chuyao & Ji, Jie & Uddin, Md Muin & Yu, Bendong & Song, Zhiying, 2021. "The study of a double-skin ventilated window integrated with CdTe cells in a rural building," Energy, Elsevier, vol. 215(PA).
    6. Peng, Jinqing & Lu, Lin & Yang, Hongxing & Ma, Tao, 2015. "Comparative study of the thermal and power performances of a semi-transparent photovoltaic façade under different ventilation modes," Applied Energy, Elsevier, vol. 138(C), pages 572-583.
    7. Halasah, Suleiman A. & Pearlmutter, David & Feuermann, Daniel, 2013. "Field installation versus local integration of photovoltaic systems and their effect on energy evaluation metrics," Energy Policy, Elsevier, vol. 52(C), pages 462-471.
    8. Tiantian Zhang & Meng Wang & Hongxing Yang, 2018. "A Review of the Energy Performance and Life-Cycle Assessment of Building-Integrated Photovoltaic (BIPV) Systems," Energies, MDPI, vol. 11(11), pages 1-34, November.
    9. Yifei Hu & Liu Wu & Ni Li & Tianwei Zhao, 2024. "Multi-Agent Decision-Making in Construction Engineering and Management: A Systematic Review," Sustainability, MDPI, vol. 16(16), pages 1-24, August.
    10. Shorabeh, Saman Nadizadeh & Samany, Najmeh Neysani & Minaei, Foad & Firozjaei, Hamzeh Karimi & Homaee, Mehdi & Boloorani, Ali Darvishi, 2022. "A decision model based on decision tree and particle swarm optimization algorithms to identify optimal locations for solar power plants construction in Iran," Renewable Energy, Elsevier, vol. 187(C), pages 56-67.
    11. Azis, Shazmin Shareena Ab., 2021. "Improving present-day energy savings among green building sector in Malaysia using benefit transfer approach: Cooling and lighting loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    12. Trinuruk, Piyatida & Sorapipatana, Chumnong & Chenvidhya, Dhirayut, 2009. "Estimating operating cell temperature of BIPV modules in Thailand," Renewable Energy, Elsevier, vol. 34(11), pages 2515-2523.
    13. Mostafa Kazemi & Luc Courard & Julien Hubert, 2021. "Heat Transfer Measurement within Green Roof with Incinerated Municipal Solid Waste Aggregates," Sustainability, MDPI, vol. 13(13), pages 1-12, June.
    14. Vardimon, Ran, 2011. "Assessment of the potential for distributed photovoltaic electricity production in Israel," Renewable Energy, Elsevier, vol. 36(2), pages 591-594.
    15. Sharples, Steve & Radhi, Hassan, 2013. "Assessing the technical and economic performance of building integrated photovoltaics and their value to the GCC society," Renewable Energy, Elsevier, vol. 55(C), pages 150-159.
    16. Bougiatioti, Flora & Michael, Aimilios, 2015. "The architectural integration of active solar systems. Building applications in the Eastern Mediterranean region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 966-982.
    17. Tiwari, Arvind & Dubey, Swapnil & Sandhu, G.S. & Sodha, M.S. & Anwar, S.I., 2009. "Exergy analysis of integrated photovoltaic thermal solar water heater under constant flow rate and constant collection temperature modes," Applied Energy, Elsevier, vol. 86(12), pages 2592-2597, December.
    18. Radhi, Hassan, 2012. "Trade-off between environmental and economic implications of PV systems integrated into the UAE residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2468-2474.
    19. Nurwidiana Nurwidiana & Bertha Maya Sopha & Adhika Widyaparaga, 2022. "Simulating Socio-Technical Transitions of Photovoltaics Using Empirically Based Hybrid Simulation-Optimization Approach," Sustainability, MDPI, vol. 14(9), pages 1-25, April.
    20. Tiwari, Sumit & Tiwari, G.N., 2017. "Energy and exergy analysis of a mixed-mode greenhouse-type solar dryer, integrated with partially covered N-PVT air collector," Energy, Elsevier, vol. 128(C), pages 183-195.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:6:d:10.1007_s10668-023-03293-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.