IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v137y2017icp1152-1158.html
   My bibliography  Save this article

Evaluation of potential benefits of solar photovoltaic shadings in Hong Kong

Author

Listed:
  • Zhang, Weilong
  • Lu, Lin
  • Peng, Jinqing

Abstract

Solar photovoltaic (PV) modules can not only generate electricity but also act as external shading devices of buildings. Solar PV shadings can effectively reduce the solar heat gain through windows, but might have a negative impact on the indoor daylight performance. Therefore, it is worth investigating the optimum design of solar PV shadings since the thermal, daylighting and power generation performance are closely integrated. In this paper, a numerical simulation model was utilized on the basis of EnergyPlus to investigate the energy saving potential of solar PV shadings with various tilt angles and orientations in Hong Kong. The results indicate that the optimum installation position for solar PV shadings is south facade with 30° tilt angle in order to maximize the electricity generation. However, considering the electricity savings from air-conditioning system and the increased electricity consumption for artificial lighting, it is recommended that solar PV shadings should be installed on a south facade with 20° tilt angle. Furthermore, the annual overall electricity benefits of solar PV shadings were compared with the widely used interior blinds. The results show that the well-designed solar PV shadings can achieve much more annual overall electricity benefits than interior blinds.

Suggested Citation

  • Zhang, Weilong & Lu, Lin & Peng, Jinqing, 2017. "Evaluation of potential benefits of solar photovoltaic shadings in Hong Kong," Energy, Elsevier, vol. 137(C), pages 1152-1158.
  • Handle: RePEc:eee:energy:v:137:y:2017:i:c:p:1152-1158
    DOI: 10.1016/j.energy.2017.04.166
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217307788
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.04.166?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yiping & Tian, Wei & Ren, Jianbo & Zhu, Li & Wang, Qingzhao, 2006. "Influence of a building's integrated-photovoltaics on heating and cooling loads," Applied Energy, Elsevier, vol. 83(9), pages 989-1003, September.
    2. Chen, Xi & Yang, Hongxing & Zhang, Weilong, 2015. "A comprehensive sensitivity study of major passive design parameters for the public rental housing development in Hong Kong," Energy, Elsevier, vol. 93(P2), pages 1804-1818.
    3. Peng, Jinqing & Lu, Lin & Yang, Hongxing & Ma, Tao, 2015. "Comparative study of the thermal and power performances of a semi-transparent photovoltaic façade under different ventilation modes," Applied Energy, Elsevier, vol. 138(C), pages 572-583.
    4. Sun, Liangliang & Lu, Lin & Yang, Hongxing, 2012. "Optimum design of shading-type building-integrated photovoltaic claddings with different surface azimuth angles," Applied Energy, Elsevier, vol. 90(1), pages 233-240.
    5. Chow, T.T. & Chan, A.L.S. & Fong, K.F. & Lin, Z. & He, W. & Ji, J., 2009. "Annual performance of building-integrated photovoltaic/water-heating system for warm climate application," Applied Energy, Elsevier, vol. 86(5), pages 689-696, May.
    6. Peng, Jinqing & Lu, Lin, 2013. "Investigation on the development potential of rooftop PV system in Hong Kong and its environmental benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 149-162.
    7. Peng, Jinqing & Lu, Lin & Yang, Hongxing & Han, Jun, 2013. "Investigation on the annual thermal performance of a photovoltaic wall mounted on a multi-layer façade," Applied Energy, Elsevier, vol. 112(C), pages 646-656.
    8. Peng, Jinqing & Curcija, Dragan C. & Lu, Lin & Selkowitz, Stephen E. & Yang, Hongxing & Zhang, Weilong, 2016. "Numerical investigation of the energy saving potential of a semi-transparent photovoltaic double-skin facade in a cool-summer Mediterranean climate," Applied Energy, Elsevier, vol. 165(C), pages 345-356.
    9. Peng, Jinqing & Lu, Lin & Yang, Hongxing & Ma, Tao, 2015. "Validation of the Sandia model with indoor and outdoor measurements for semi-transparent amorphous silicon PV modules," Renewable Energy, Elsevier, vol. 80(C), pages 316-323.
    10. Huang, Yu & Niu, Jian-lei & Chung, Tse-ming, 2014. "Comprehensive analysis on thermal and daylighting performance of glazing and shading designs on office building envelope in cooling-dominant climates," Applied Energy, Elsevier, vol. 134(C), pages 215-228.
    11. Miyazaki, T. & Akisawa, A. & Kashiwagi, T., 2005. "Energy savings of office buildings by the use of semi-transparent solar cells for windows," Renewable Energy, Elsevier, vol. 30(3), pages 281-304.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiantian Zhang & Meng Wang & Hongxing Yang, 2018. "A Review of the Energy Performance and Life-Cycle Assessment of Building-Integrated Photovoltaic (BIPV) Systems," Energies, MDPI, vol. 11(11), pages 1-34, November.
    2. Zhang, Tiantian & Tan, Yufei & Yang, Hongxing & Zhang, Xuedan, 2016. "The application of air layers in building envelopes: A review," Applied Energy, Elsevier, vol. 165(C), pages 707-734.
    3. Wang, Chuyao & Ji, Jie & Uddin, Md Muin & Yu, Bendong & Song, Zhiying, 2021. "The study of a double-skin ventilated window integrated with CdTe cells in a rural building," Energy, Elsevier, vol. 215(PA).
    4. Luo, Yongqiang & Zhang, Ling & Wang, Xiliang & Xie, Lei & Liu, Zhongbing & Wu, Jing & Zhang, Yelin & He, Xihua, 2017. "A comparative study on thermal performance evaluation of a new double skin façade system integrated with photovoltaic blinds," Applied Energy, Elsevier, vol. 199(C), pages 281-293.
    5. Peng, Jinqing & Curcija, Dragan C. & Thanachareonkit, Anothai & Lee, Eleanor S. & Goudey, Howdy & Selkowitz, Stephen E., 2019. "Study on the overall energy performance of a novel c-Si based semitransparent solar photovoltaic window," Applied Energy, Elsevier, vol. 242(C), pages 854-872.
    6. Peng, Jinqing & Curcija, Dragan C. & Lu, Lin & Selkowitz, Stephen E. & Yang, Hongxing & Zhang, Weilong, 2016. "Numerical investigation of the energy saving potential of a semi-transparent photovoltaic double-skin facade in a cool-summer Mediterranean climate," Applied Energy, Elsevier, vol. 165(C), pages 345-356.
    7. Cheng, Yuanda & Gao, Min & Jia, Jie & Sun, Yanyi & Fan, Yi & Yu, Min, 2019. "An optimal and comparison study on daylight and overall energy performance of double-glazed photovoltaics windows in cold region of China," Energy, Elsevier, vol. 170(C), pages 356-366.
    8. Peng, Jinqing & Lu, Lin & Wang, Meng, 2019. "A new model to evaluate solar spectrum impacts on the short circuit current of solar photovoltaic modules," Energy, Elsevier, vol. 169(C), pages 29-37.
    9. Wang, Meng & Peng, Jinqing & Li, Nianping & Yang, Hongxing & Wang, Chunlei & Li, Xue & Lu, Tao, 2017. "Comparison of energy performance between PV double skin facades and PV insulating glass units," Applied Energy, Elsevier, vol. 194(C), pages 148-160.
    10. Irshad, Kashif & Habib, Khairul & Basrawi, Firdaus & Saha, Bidyut Baran, 2017. "Study of a thermoelectric air duct system assisted by photovoltaic wall for space cooling in tropical climate," Energy, Elsevier, vol. 119(C), pages 504-522.
    11. Wang, Meng & Peng, Jinqing & Li, Nianping & Lu, Lin & Ma, Tao & Yang, Hongxing, 2016. "Assessment of energy performance of semi-transparent PV insulating glass units using a validated simulation model," Energy, Elsevier, vol. 112(C), pages 538-548.
    12. Yang, Tingting & Athienitis, Andreas K., 2016. "A review of research and developments of building-integrated photovoltaic/thermal (BIPV/T) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 886-912.
    13. Vassiliades, C. & Agathokleous, R. & Barone, G. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Buonomano, A. & Kalogirou, S., 2022. "Building integration of active solar energy systems: A review of geometrical and architectural characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    14. Azis, Shazmin Shareena Ab., 2021. "Improving present-day energy savings among green building sector in Malaysia using benefit transfer approach: Cooling and lighting loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    15. Skandalos, Nikolaos & Wang, Meng & Kapsalis, Vasileios & D'Agostino, Delia & Parker, Danny & Bhuvad, Sushant Suresh & Udayraj, & Peng, Jinqing & Karamanis, Dimitris, 2022. "Building PV integration according to regional climate conditions: BIPV regional adaptability extending Köppen-Geiger climate classification against urban and climate-related temperature increases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    16. Wu, Zhenghong & Zhang, Ling & Su, Xiaosong & Wu, Jing & Liu, Zhongbing, 2022. "Experimental and numerical analysis of naturally ventilated PV-DSF in a humid subtropical climate," Renewable Energy, Elsevier, vol. 200(C), pages 633-646.
    17. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Xie, Lei & Wang, Xiliang & Wu, Jing, 2018. "Experimental study and performance evaluation of a PV-blind embedded double skin façade in winter season," Energy, Elsevier, vol. 165(PB), pages 326-342.
    18. Li, Meng & Ma, Tao & Liu, Jiaying & Li, Huanhuan & Xu, Yaling & Gu, Wenbo & Shen, Lu, 2019. "Numerical and experimental investigation of precast concrete facade integrated with solar photovoltaic panels," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    19. Sun, Yanyi & Shanks, Katie & Baig, Hasan & Zhang, Wei & Hao, Xia & Li, Yongxue & He, Bo & Wilson, Robin & Liu, Hao & Sundaram, Senthilarasu & Zhang, Jingquan & Xie, Lingzhi & Mallick, Tapas & Wu, Yupe, 2018. "Integrated semi-transparent cadmium telluride photovoltaic glazing into windows: Energy and daylight performance for different architecture designs," Applied Energy, Elsevier, vol. 231(C), pages 972-984.
    20. Cheng, Yuanda & Gao, Min & Dong, Jiankai & Jia, Jie & Zhao, Xudong & Li, Guiqiang, 2018. "Investigation on the daylight and overall energy performance of semi-transparent photovoltaic facades in cold climatic regions of China," Applied Energy, Elsevier, vol. 232(C), pages 517-526.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:137:y:2017:i:c:p:1152-1158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.