IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i4d10.1007_s10668-023-03075-6.html
   My bibliography  Save this article

Energy-water nexus for thermal power generation in India: challenges and opportunities

Author

Listed:
  • Ravi Prakash

    (Motilal Nehru National Institute of Technology, Allahabad)

  • Satyajit Malode

    (Motilal Nehru National Institute of Technology, Allahabad)

  • Jagadish Chandra Mohanta

    (Motilal Nehru National Institute of Technology, Allahabad)

  • Aakarsh Kumar Dubey

    (Motilal Nehru National Institute of Technology, Allahabad)

  • Jatin

    (Motilal Nehru National Institute of Technology, Allahabad)

  • Dilawar Husain

    (Maulana Mukhtar Ahmad Nadvi Technical Campus)

Abstract

Thermal power generation is economical in the current scenario, but it is a water-intensive process, resulting in a high-water footprint. In this research, life cycle water use (LCWU) was assessed for three coal-based thermal power plant in India. The LCWU was found to be in the range of 2.5 to 3.5 L-kWh−1. The results of the LCWU of coal-based thermal power plants in India are higher than the global average of 1.75 L-kWh−1. In order to reduce the dependency on water, air-cooled condenser (ACC) with a novel approach of reducing temperature of air before entering into condenser is purposed using vapour absorption chillers. A 300 MW thermal power plant located in the South India region is chosen to illustrate the application of the proposed system. Initially, waste heat from flue gas is used to run a vapour absorption chiller, and finally a solar-assisted vapour compression chiller is used. Also, in order to utilize large coastal lines in India, an alternate approach of sea water cooling-based thermal power generation is investigated. A 2 MW steam turbine plant utilizing deep sea water is designed and analysed. In seawater cooling system the condenser temperature is reduced, increasing efficiency by 1.9% and power output by 133 kW. It resulted in power generation with multiple benefits, including cooling, desalinated water, and increased plant efficiency. The outcomes of this study provide information on water use in Indian thermal power plants along with its comparative assessment. A study of ACCs and seawater-cooled condensers is also an opportunity to reduce the life-cycle water use in thermal power plants in India.

Suggested Citation

  • Ravi Prakash & Satyajit Malode & Jagadish Chandra Mohanta & Aakarsh Kumar Dubey & Jatin & Dilawar Husain, 2024. "Energy-water nexus for thermal power generation in India: challenges and opportunities," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(4), pages 8893-8913, April.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:4:d:10.1007_s10668-023-03075-6
    DOI: 10.1007/s10668-023-03075-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03075-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03075-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xie, Xiaomin & Jiang, Xiaoyun & Zhang, Tingting & Huang, Zhen, 2020. "Study on impact of electricity production on regional water resource in China by water footprint," Renewable Energy, Elsevier, vol. 152(C), pages 165-178.
    2. Jinjing Gao & Peng Zhao & Hongwei Zhang & Guozhu Mao & Yuan Wang, 2018. "Operational Water Withdrawal and Consumption Factors for Electricity Generation Technology in China—A Literature Review," Sustainability, MDPI, vol. 10(4), pages 1-15, April.
    3. Chai, Li & Liao, Xiawei & Yang, Liu & Yan, Xianglin, 2018. "Assessing life cycle water use and pollution of coal-fired power generation in China using input-output analysis," Applied Energy, Elsevier, vol. 231(C), pages 951-958.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Haoran & Cui, Xueqin & Hui, Jingxuan & He, Gang & Weng, Yuwei & Nie, Yaoyu & Wang, Can & Cai, Wenjia, 2021. "Catchment-level water stress risk of coal power transition in China under 2℃/1.5℃ targets," Applied Energy, Elsevier, vol. 294(C).
    2. Jin, Yi & Behrens, Paul & Tukker, Arnold & Scherer, Laura, 2019. "Water use of electricity technologies: A global meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. Liao, Xiawei & Zhao, Xu & Liu, Wenfeng & Li, Ruoshui & Wang, Xiaoxi & Wang, Wenpeng & Tillotson, Martin R., 2020. "Comparing water footprint and water scarcity footprint of energy demand in China’s six megacities," Applied Energy, Elsevier, vol. 269(C).
    4. Li, Junjie & Yan, Yulong & Wang, Yirong & Zhang, Yifu & Shao, Lianwei & Li, Menggang, 2024. "Spatial-successive transfer of virtual scarcity water along China's coal-based electric chain," Energy, Elsevier, vol. 288(C).
    5. Cui, Qi & He, Ling & Han, Guoyi & Chen, Hao & Cao, Juanjuan, 2020. "Review on climate and water resource implications of reducing renewable power curtailment in China: A nexus perspective," Applied Energy, Elsevier, vol. 267(C).
    6. Jun Liu & Yuyan Zhou & Lihua Chen & Lichuan Wang, 2023. "Assessing the Impact of Climate Change on Water Usage in Typical Industrial Enterprises," Sustainability, MDPI, vol. 15(13), pages 1-18, June.
    7. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    8. Hanfei Wu & Ruochen Jin & Ao Liu & Shiyun Jiang & Li Chai, 2022. "Savings and Losses of Scarce Virtual Water in the International Trade of Wheat, Maize, and Rice," IJERPH, MDPI, vol. 19(7), pages 1-12, March.
    9. Lv, J. & Li, Y.P. & Huang, G.H. & Suo, C. & Mei, H. & Li, Y., 2020. "Quantifying the impact of water availability on China's energy system under uncertainties: A perceptive of energy-water nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Samrena Jabeen & Subha Malik & Soha Khan & Nohman Khan & Muhammad Imran Qureshi & Mohd Shamsuri Md Saad, 2021. "A Comparative Systematic Literature Review and Bibliometric Analysis on Sustainability of Renewable Energy Sources," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 270-280.
    11. Liu, Yitong & Chen, Bin & Wei, Wendong & Shao, Ling & Li, Zhi & Jiang, Weizhong & Chen, Guoqian, 2020. "Global water use associated with energy supply, demand and international trade of China," Applied Energy, Elsevier, vol. 257(C).
    12. Diego Sesma-Martín, 2020. "Cooling Water: A Source of Conflict in Spain, 1970–1980," Sustainability, MDPI, vol. 12(11), pages 1-18, June.
    13. Zhu, Yongnan & Ke, Jing & Wang, Jianhua & Liu, He & Jiang, Shan & Blum, Helcio & Zhao, Yong & He, Guohua & Meng, Yuan & Su, Jian, 2020. "Water transfer and losses embodied in the West–East electricity transmission project in China," Applied Energy, Elsevier, vol. 275(C).
    14. Li, Guang & Li, Na & Liu, Fan & Zhou, Xing, 2022. "Development of life cycle water footprint for lignocellulosic biomass to biobutanol via thermochemical method," Renewable Energy, Elsevier, vol. 198(C), pages 222-227.
    15. Ghosh, Bikramaditya & Gubareva, Mariya & Ghosh, Anandita & Paparas, Dimitrios & Vo, Xuan Vinh, 2024. "Food, energy, and water nexus: A study on interconnectedness and trade-offs," Energy Economics, Elsevier, vol. 133(C).
    16. Hao Li & Yuhuan Zhao & Jiang Lin, 2020. "A review of the energy–carbon–water nexus: Concepts, research focuses, mechanisms, and methodologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(1), January.
    17. Díaz-Trujillo, Luis Alberto & González-Avilés, Mauricio & Fuentes-Cortés, Luis Fabián, 2024. "Soft-clustering for conflict management around the water-energy-carbon nexus and energy security," Applied Energy, Elsevier, vol. 360(C).
    18. Aixi Han & Ao Liu & Zhenshan Guo & Yi Liang & Li Chai, 2023. "Measuring Gains and Losses in Virtual Water Trade from Environmental and Economic Perspectives," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(1), pages 195-209, May.
    19. Gallo Corredor, José Antonio & Lizeth Vargas González, Ginary & Velasco Granados, Marcela & Gutiérrez, Luis & Pérez, Edier Humberto, 2021. "Use of the gray water footprint as an indicator of contamination caused by artisanal mining in Colombia," Resources Policy, Elsevier, vol. 73(C).
    20. Haonan Zhang & Xingping Zhang & Jiahai Yuan, 2020. "Coal power in China: A multi‐level perspective review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(6), November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:4:d:10.1007_s10668-023-03075-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.