IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v25y2023i12d10.1007_s10668-022-02638-3.html
   My bibliography  Save this article

A collective efficacy-based approach for bi-objective sustainable project portfolio selection using interdependency network model between projects

Author

Listed:
  • Mohadeseh Ebnerasoul

    (Iran University of Science and Technology)

  • Seyed Farid Ghannadpour

    (Iran University of Science and Technology)

  • Abdolrahman Haeri

    (Iran University of Science and Technology)

Abstract

The most critical and complex task in project-oriented organizations is selecting a project portfolio with maximum efficiency. Accordingly, conducting a comprehensive analysis of the main parameters affecting this issue using appropriate tools and techniques to optimally select projects in uncertain situations is of great significance. Moreover, these approaches should be aligned with sustainability concepts as a necessity in modern society and include interactions among society, including social interactions, development, and the environment to meet today's needs. Therefore, the present study aimed to provide a comprehensive two-objective sustainable model. This model collected the maximum efficiency of the selected portfolio by making changes in the data envelopment analysis in terms of network interdependency between projects and the potential impact of projects on each other. The direct and indirect connections concluded by interdependency between projects were also determined by a Bayesian network modeling to analyze the criticality and possible impact of a project's failure on each other and on the entire portfolio. Moreover, the proposed comprehensive model provided that the maximum use of organizational resources whit the minimums of organizational goals. The proposed model was first examined on the datasets of 37 previous papers, and its applicability was analyzed. Finally, a real case with 21 projects was employed for implementation. The results showed that the portfolio selected in the case study results was always better than the selected portfolio using the traditional two-stage integrated model method. Therefore, selecting a project portfolio using this model demonstrated maximum profit and minimum risk for project-oriented organizations.

Suggested Citation

  • Mohadeseh Ebnerasoul & Seyed Farid Ghannadpour & Abdolrahman Haeri, 2023. "A collective efficacy-based approach for bi-objective sustainable project portfolio selection using interdependency network model between projects," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(12), pages 13981-14001, December.
  • Handle: RePEc:spr:endesu:v:25:y:2023:i:12:d:10.1007_s10668-022-02638-3
    DOI: 10.1007/s10668-022-02638-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-022-02638-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-022-02638-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seyed Farid Ghannadpour & Ali Reza Hoseini & Morteza Bagherpour & Elmira Ahmadi, 2021. "Appraising the triple bottom line utility of sustainable project portfolio selection using a novel multi-criteria house of portfolio," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3396-3437, March.
    2. F. Perez & T. Gomez, 2016. "Multiobjective project portfolio selection with fuzzy constraints," Annals of Operations Research, Springer, vol. 245(1), pages 7-29, October.
    3. Ali RezaHoseini & Zahra Rahmani & Morteza BagherPour, 2022. "Performance evaluation of sustainable projects: a possibilistic integrated novel analytic hierarchy process-data envelopment analysis approach using Z-Number information," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3198-3257, March.
    4. Adel Hatami-Marbini & Saber Saati & Seyed Mojtaba Sajadi, 2018. "Efficiency analysis in two-stage structures using fuzzy data envelopment analysis," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(4), pages 909-932, December.
    5. Mavrotas, George & Makryvelios, Evangelos, 2021. "Combining multiple criteria analysis, mathematical programming and Monte Carlo simulation to tackle uncertainty in Research and Development project portfolio selection: A case study from Greece," European Journal of Operational Research, Elsevier, vol. 291(2), pages 794-806.
    6. Cook, Wade D. & Green, Rodney H., 2000. "Project prioritization: a resource-constrained data envelopment analysis approach," Socio-Economic Planning Sciences, Elsevier, vol. 34(2), pages 85-99, June.
    7. Alessio Maria Braccini & Emanuele Gabriel Margherita, 2018. "Exploring Organizational Sustainability of Industry 4.0 under the Triple Bottom Line: The Case of a Manufacturing Company," Sustainability, MDPI, vol. 11(1), pages 1-17, December.
    8. Muhittin Oral & Ossama Kettani & Pascal Lang, 1991. "A Methodology for Collective Evaluation and Selection of Industrial R&D Projects," Management Science, INFORMS, vol. 37(7), pages 871-885, July.
    9. Mehdi Toloo & Soroosh Nalchigar & Babak Sohrabi, 2018. "Selecting most efficient information system projects in presence of user subjective opinions: a DEA approach," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(4), pages 1027-1051, December.
    10. Dey, Prasanta Kumar, 2006. "Integrated project evaluation and selection using multiple-attribute decision-making technique," International Journal of Production Economics, Elsevier, vol. 103(1), pages 90-103, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amar Oukil & Srikrishna Madhumohan Govindaluri, 2020. "A hybrid multi‐attribute decision‐making procedure for ranking project proposals: A historical data perspective," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 41(3), pages 461-472, April.
    2. Tavana, Madjid & Khosrojerdi, Ghasem & Mina, Hassan & Rahman, Amirah, 2019. "A hybrid mathematical programming model for optimal project portfolio selection using fuzzy inference system and analytic hierarchy process," Evaluation and Program Planning, Elsevier, vol. 77(C).
    3. Petr Fiala, 2018. "Project portfolio designing using data envelopment analysis and De Novo optimisation," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(4), pages 847-859, December.
    4. Gabriel Villa & Sebastián Lozano & Sandra Redondo, 2021. "Data Envelopment Analysis Approach to Energy-Saving Projects Selection in an Energy Service Company," Mathematics, MDPI, vol. 9(2), pages 1-15, January.
    5. George Mavrotas & Evangelos Makryvelios, 2023. "R&D project portfolio selection using the Iterative Trichotomic Approach in order to study how subjectivity of the weights is reflected in the selected projects of the final portfolio," Operational Research, Springer, vol. 23(3), pages 1-18, September.
    6. Oukil, Amar, 2020. "Exploiting value system multiplicity and preference voting for robust ranking," Omega, Elsevier, vol. 94(C).
    7. Josef Jablonský & Ali Emrouznejad & Mehdi Toloo, 2018. "Editorial: Special issue on data envelopment analysis," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(4), pages 809-812, December.
    8. Mavrotas, G. & Diakoulaki, D. & Caloghirou, Y., 2006. "Project prioritization under policy restrictions. A combination of MCDA with 0-1 programming," European Journal of Operational Research, Elsevier, vol. 171(1), pages 296-308, May.
    9. Liesiö, Juuso & Kee, Taeyoung & Malo, Pekka, 2024. "Modeling project interactions in multiattribute portfolio decision analysis: Axiomatic foundations and practical implications," European Journal of Operational Research, Elsevier, vol. 316(3), pages 988-1000.
    10. Mavrotas, George & Diakoulaki, Danae & Kourentzis, Athanasios, 2008. "Selection among ranked projects under segmentation, policy and logical constraints," European Journal of Operational Research, Elsevier, vol. 187(1), pages 177-192, May.
    11. Adler, Nicole & Friedman, Lea & Sinuany-Stern, Zilla, 2002. "Review of ranking methods in the data envelopment analysis context," European Journal of Operational Research, Elsevier, vol. 140(2), pages 249-265, July.
    12. Liu, Hui-hui & Song, Yao-yao & Liu, Xiao-xiao & Yang, Guo-liang, 2020. "Aggregating the DEA prospect cross-efficiency with an application to state key laboratories in China," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    13. Maiyar, Lohithaksha M. & Thakkar, Jitesh J., 2019. "Modelling and analysis of intermodal food grain transportation under hub disruption towards sustainability," International Journal of Production Economics, Elsevier, vol. 217(C), pages 281-297.
    14. Nejla Ould Daoud Ellili, 2024. "Bibliometric analysis of sustainability papers: Evidence from Environment, Development and sustainability," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(4), pages 8183-8209, April.
    15. Viktoriia Myronchuk & Oleksandr Yatsenko & Dmytro Riznyk & Olena Hurina & Andrii Frolov, 2024. "Financing Sustainable Development: Analysis of Modern Approaches and Practices in the Context of Financial and Credit Activities," International Journal of Economics and Financial Issues, Econjournals, vol. 14(5), pages 317-329, September.
    16. P P Sutton & R H Green, 2007. "Choice is a value statement. On inferring optimal multiple attribute portfolios from non-optimal nominations," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(11), pages 1526-1533, November.
    17. Livio Cricelli & Serena Strazzullo, 2021. "The Economic Aspect of Digital Sustainability: A Systematic Review," Sustainability, MDPI, vol. 13(15), pages 1-15, July.
    18. Özköse, Hakan & Güney, Gül, 2023. "The effects of industry 4.0 on productivity: A scientific mapping study," Technology in Society, Elsevier, vol. 75(C).
    19. Odysseas Cartalos & Stelios Rozakis & Dominiki Tsiouki, 2018. "A method to assess and support exploitation projects of university researchers," The Journal of Technology Transfer, Springer, vol. 43(4), pages 986-1006, August.
    20. Tao, Zhibin & Chao, Jiaxiao, 2024. "Unlocking new opportunities in the industry 4.0 era, exploring the critical impact of digital technology on sustainable performance and the mediating role of GSCM practices," Innovation and Green Development, Elsevier, vol. 3(3).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:25:y:2023:i:12:d:10.1007_s10668-022-02638-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.