IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v25y2023i11d10.1007_s10668-023-03774-0.html
   My bibliography  Save this article

Climate-related spatial reduction risk of agricultural lands on the Mediterranean coast in Türkiye and scenario-based modelling of urban growth

Author

Listed:
  • Oznur Isinkaralar

    (Kastamonu University)

  • Kaan Isinkaralar

    (Kastamonu University)

  • Dilara Yilmaz

    (Kastamonu University)

Abstract

The effects of urbanization and climate crisis due to warming and severe climate events are the primary critical developments that threaten agricultural production activities worldwide. The annual average surface temperature in Türkiye increased by 1.07 °C between 2010 and 2019, and it reached 1.4 °C in 2021. It is predicted that the temperatures will continue to grow in the coastal areas of the Mediterranean Region, where the annual average temperature is 18–20 °C. In countries with high climate risks, the sustainability of agricultural activities is a priority research topic in many respects, especially food safety. In this context, the spatiotemporal change in agricultural areas in cities located on the Mediterranean coast, one of the country’s warmest regions, is estimated for 2040 via the Cellular Automata-Markov chain method. As a result of the simulation made in the IDRISI Selva program, two different estimations were made: the trend model reflecting the current trend model (MT) and the sustainable agricultural model (MAS), where agricultural areas are limited. In the MT, the existing residential area will increase by 68.9% in 2040 and 208.1% in 2076. In the MAS, it will be limited to an increase of 60.8% in 2040 and 194.5% in 2076.

Suggested Citation

  • Oznur Isinkaralar & Kaan Isinkaralar & Dilara Yilmaz, 2023. "Climate-related spatial reduction risk of agricultural lands on the Mediterranean coast in Türkiye and scenario-based modelling of urban growth," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 13199-13217, November.
  • Handle: RePEc:spr:endesu:v:25:y:2023:i:11:d:10.1007_s10668-023-03774-0
    DOI: 10.1007/s10668-023-03774-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03774-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03774-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Guan, DongJie & Li, HaiFeng & Inohae, Takuro & Su, Weici & Nagaie, Tadashi & Hokao, Kazunori, 2011. "Modeling urban land use change by the integration of cellular automaton and Markov model," Ecological Modelling, Elsevier, vol. 222(20), pages 3761-3772.
    2. Muhammad Salem & Arghadeep Bose & Bashar Bashir & Debanjan Basak & Subham Roy & Indrajit R. Chowdhury & Abdullah Alsalman & Naoki Tsurusaki, 2021. "Urban Expansion Simulation Based on Various Driving Factors Using a Logistic Regression Model: Delhi as a Case Study," Sustainability, MDPI, vol. 13(19), pages 1-17, September.
    3. Yang, Xin & Zheng, Xin-Qi & Lv, Li-Na, 2012. "A spatiotemporal model of land use change based on ant colony optimization, Markov chain and cellular automata," Ecological Modelling, Elsevier, vol. 233(C), pages 11-19.
    4. Nadeem Ullah & Muhammad Amir Siddique & Mengyue Ding & Sara Grigoryan & Irshad Ahmad Khan & Zhihao Kang & Shangen Tsou & Tianlin Zhang & Yike Hu & Yazhuo Zhang, 2023. "The Impact of Urbanization on Urban Heat Island: Predictive Approach Using Google Earth Engine and CA-Markov Modelling (2005–2050) of Tianjin City, China," IJERPH, MDPI, vol. 20(3), pages 1-15, February.
    5. Sofia Ribeiro & Audrey Limoges & Guillaume Massé & Kasper L. Johansen & William Colgan & Kaarina Weckström & Rebecca Jackson & Eleanor Georgiadis & Naja Mikkelsen & Antoon Kuijpers & Jesper Olsen & St, 2021. "Vulnerability of the North Water ecosystem to climate change," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    6. Muhammad Fahad Baqa & Fang Chen & Linlin Lu & Salman Qureshi & Aqil Tariq & Siyuan Wang & Linhai Jing & Salma Hamza & Qingting Li, 2021. "Monitoring and Modeling the Patterns and Trends of Urban Growth Using Urban Sprawl Matrix and CA-Markov Model: A Case Study of Karachi, Pakistan," Land, MDPI, vol. 10(7), pages 1-17, July.
    7. Carlos Mestanza-Ramón & Robinson Ordoñez-Alcivar & Carla Arguello-Guadalupe & Katherin Carrera-Silva & Giovanni D’Orio & Salvatore Straface, 2022. "History, Socioeconomic Problems and Environmental Impacts of Gold Mining in the Andean Region of Ecuador," IJERPH, MDPI, vol. 19(3), pages 1-21, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michel Opelele Omeno & Ying Yu & Wenyi Fan & Tolerant Lubalega & Chen Chen & Claude Kachaka Sudi Kaiko, 2021. "Analysis of the Impact of Land-Use/Land-Cover Change on Land-Surface Temperature in the Villages within the Luki Biosphere Reserve," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    2. Courage Kamusoko & Yukio Wada & Toru Furuya & Shunsuke Tomimura & Mitsuru Nasu & Khamma Homsysavath, 2013. "Simulating Future Forest Cover Changes in Pakxeng District, Lao People’s Democratic Republic (PDR): Implications for Sustainable Forest Management," Land, MDPI, vol. 2(1), pages 1-19, January.
    3. Mansour, Shawky & Al-Belushi, Mohammed & Al-Awadhi, Talal, 2020. "Monitoring land use and land cover changes in the mountainous cities of Oman using GIS and CA-Markov modelling techniques," Land Use Policy, Elsevier, vol. 91(C).
    4. Cheechouyang Faichia & Zhijun Tong & Jiquan Zhang & Xingpeng Liu & Emmanuel Kazuva & Kashif Ullah & Bazel Al-Shaibah, 2020. "Using RS Data-Based CA–Markov Model for Dynamic Simulation of Historical and Future LUCC in Vientiane, Laos," Sustainability, MDPI, vol. 12(20), pages 1-20, October.
    5. Ruci Wang & Hao Hou & Yuji Murayama, 2018. "Scenario-Based Simulation of Tianjin City Using a Cellular Automata–Markov Model," Sustainability, MDPI, vol. 10(8), pages 1-20, July.
    6. Shufang Wang & Xiyun Jiao & Liping Wang & Aimin Gong & Honghui Sang & Mohamed Khaled Salahou & Liudong Zhang, 2020. "Integration of Boosted Regression Trees and Cellular Automata—Markov Model to Predict the Land Use Spatial Pattern in Hotan Oasis," Sustainability, MDPI, vol. 12(4), pages 1-13, February.
    7. Han, Yu & Jia, Haifeng, 2017. "Simulating the spatial dynamics of urban growth with an integrated modeling approach: A case study of Foshan, China," Ecological Modelling, Elsevier, vol. 353(C), pages 107-116.
    8. Yanan Li & Linghua Duo & Ming Zhang & Zhenhua Wu & Yanjun Guan, 2021. "Assessment and Estimation of the Spatial and Temporal Evolution of Landscape Patterns and Their Impact on Habitat Quality in Nanchang, China," Land, MDPI, vol. 10(10), pages 1-19, October.
    9. Zimu Jia & Bingran Ma & Jing Zhang & Weihua Zeng, 2018. "Simulating Spatial-Temporal Changes of Land-Use Based on Ecological Redline Restrictions and Landscape Driving Factors: A Case Study in Beijing," Sustainability, MDPI, vol. 10(4), pages 1-18, April.
    10. Selamawit Haftu Gebresellase & Zhiyong Wu & Huating Xu & Wada Idris Muhammad, 2023. "Scenario-Based LULC Dynamics Projection Using the CA–Markov Model on Upper Awash Basin (UAB), Ethiopia," Sustainability, MDPI, vol. 15(2), pages 1-27, January.
    11. Shuqing Wang & Xinqi Zheng, 2023. "Dominant transition probability: combining CA-Markov model to simulate land use change," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6829-6847, July.
    12. Auwalu Faisal Koko & Wu Yue & Ghali Abdullahi Abubakar & Roknisadeh Hamed & Akram Ahmed Noman Alabsi, 2020. "Monitoring and Predicting Spatio-Temporal Land Use/Land Cover Changes in Zaria City, Nigeria, through an Integrated Cellular Automata and Markov Chain Model (CA-Markov)," Sustainability, MDPI, vol. 12(24), pages 1-21, December.
    13. Wang, Han & Tian, Fuan & Wu, Jianxian & Nie, Xin, 2023. "Is China forest landscape restoration (FLR) worth it? A cost-benefit analysis and non-equilibrium ecological view," World Development, Elsevier, vol. 161(C).
    14. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    15. Lin Meng & Wentao Si, 2022. "The Driving Mechanism of Urban Land Expansion from 2005 to 2018: The Case of Yangzhou, China," IJERPH, MDPI, vol. 19(23), pages 1-14, November.
    16. Ge Wang & Ziqi Zhou & Jianguo Xia & Dinghua Ou & Jianbo Fei & Shunya Gong & Yuxiao Xiang, 2023. "Optimal Allocation of Territorial Space in the Minjiang River Basin Based on a Double Optimization Simulation Model," Land, MDPI, vol. 12(11), pages 1-26, October.
    17. Milad Asadi & Amir Oshnooei-Nooshabadi & Samira-Sadat Saleh & Fattaneh Habibnezhad & Sonia Sarafraz-Asbagh & John Lodewijk Van Genderen, 2022. "Urban Sprawl Simulation Mapping of Urmia (Iran) by Comparison of Cellular Automata–Markov Chain and Artificial Neural Network (ANN) Modeling Approach," Sustainability, MDPI, vol. 14(23), pages 1-16, November.
    18. K. Prakash & R. Jegankumar & R. S. Libina, 2023. "Modelling differential urban growth dynamics for growth decentralisation: a study on Tiruchirappalli metropolitan and sub-tier towns, India," Asia-Pacific Journal of Regional Science, Springer, vol. 7(4), pages 1191-1221, December.
    19. Meisam Jafari & Hamid Majedi & Seyed Masoud Monavari & Ali Asghar Alesheikh & Mirmasoud Kheirkhah Zarkesh, 2016. "Dynamic Simulation of Urban Expansion Based on Cellular Automata and Logistic Regression Model: Case Study of the Hyrcanian Region of Iran," Sustainability, MDPI, vol. 8(8), pages 1-18, August.
    20. Liu, Dongya & Zheng, Xinqi & Zhang, Chunxiao & Wang, Hongbin, 2017. "A new temporal–spatial dynamics method of simulating land-use change," Ecological Modelling, Elsevier, vol. 350(C), pages 1-10.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:25:y:2023:i:11:d:10.1007_s10668-023-03774-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.