IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i7p700-d587555.html
   My bibliography  Save this article

Monitoring and Modeling the Patterns and Trends of Urban Growth Using Urban Sprawl Matrix and CA-Markov Model: A Case Study of Karachi, Pakistan

Author

Listed:
  • Muhammad Fahad Baqa

    (Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China)

  • Fang Chen

    (Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China)

  • Linlin Lu

    (Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China)

  • Salman Qureshi

    (Institute of Geography, Humboldt University of Berlin, 12489 Berlin, Germany)

  • Aqil Tariq

    (State key laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (LIESMARS), Wuhan University, Wuhan 430079, China)

  • Siyuan Wang

    (Research Center for Eco-Environmental Sciences, State Key Laboratory of Urban and Regional Ecology, Chinese Academy of Sciences, Beijing 100085, China)

  • Linhai Jing

    (Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China)

  • Salma Hamza

    (Department of Earth and Environmental Sciences, Bahria University Karachi Campus, Karachi 75300, Pakistan)

  • Qingting Li

    (Airborne Remote Sensing Center, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China)

Abstract

Understanding the spatial growth of cities is crucial for proactive planning and sustainable urbanization. The largest and most densely inhabited megapolis of Pakistan, Karachi, has experienced massive spatial growth not only in the core areas of the city, but also in the city’s suburbs and outskirts over the past decades. In this study, the land use/land cover (LULC) in Karachi was classified using Landsat data and the random forest algorithm from the Google Earth Engine cloud platform for the years 1990, 2000, 2010, and 2020. Land use/land cover classification maps as well as an urban sprawl matrix technique were used to analyze the geographical patterns and trends of urban sprawl. Six urban classes, namely, the primary urban core, secondary urban core, sub-urban fringe, scatter settlement, urban open space, and non-urban area, were determined for the exploration of urban landscape changes. Future scenarios of LULC for 2030 were predicted using a CA–Markov model. The study found that the built-up area had expanded in a considerably unpredictable manner, primarily at the expense of agricultural land. The increase in mangroves and grassland and shrub land proved the effectiveness of afforestation programs in improving vegetation coverage in the study area. The investigation of urban landscape alteration revealed that the primary urban core expanded from the core districts, namely, the Central, South, and East districts, and a new urban secondary core emerged in Malir in 2020. The CA–Markov model showed that the total urban built-up area could potentially increase from 584.78 km 2 in 2020 to 652.59 km 2 in 2030. The integrated method combining remote sensing, GIS, and an urban sprawl matrix has proven invaluable for the investigation of urban sprawl in a rapidly growing city.

Suggested Citation

  • Muhammad Fahad Baqa & Fang Chen & Linlin Lu & Salman Qureshi & Aqil Tariq & Siyuan Wang & Linhai Jing & Salma Hamza & Qingting Li, 2021. "Monitoring and Modeling the Patterns and Trends of Urban Growth Using Urban Sprawl Matrix and CA-Markov Model: A Case Study of Karachi, Pakistan," Land, MDPI, vol. 10(7), pages 1-17, July.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:7:p:700-:d:587555
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/7/700/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/7/700/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hashem Dadashpoor & Mahboobeh Nateghi, 2017. "Simulating spatial pattern of urban growth using GIS-based SLEUTH model: a case study of eastern corridor of Tehran metropolitan region, Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(2), pages 527-547, April.
    2. Guan, DongJie & Li, HaiFeng & Inohae, Takuro & Su, Weici & Nagaie, Tadashi & Hokao, Kazunori, 2011. "Modeling urban land use change by the integration of cellular automaton and Markov model," Ecological Modelling, Elsevier, vol. 222(20), pages 3761-3772.
    3. Ahmed, Qureshi Intikhab & Lu, Huapu & Ye, Shi, 2008. "Urban transportation and equity: A case study of Beijing and Karachi," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(1), pages 125-139, January.
    4. Michael Batty, 2005. "Agents, Cells, and Cities: New Representational Models for Simulating Multiscale Urban Dynamics," Environment and Planning A, , vol. 37(8), pages 1373-1394, August.
    5. Yakubu Aliyu Bununu, 2017. "Integration of Markov chain analysis and similarity-weighted instance-based machine learning algorithm (SimWeight) to simulate urban expansion," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 21(2), pages 217-237, May.
    6. Salma Hamza & Imran Khan & Linlin Lu & Hua Liu & Farkhunda Burke & Syed Nawaz-ul-Huda & Muhammad Fahad Baqa & Aqil Tariq, 2021. "The Relationship between Neighborhood Characteristics and Homicide in Karachi, Pakistan," Sustainability, MDPI, vol. 13(10), pages 1-14, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sajjad Hussain & Linlin Lu & Muhammad Mubeen & Wajid Nasim & Shankar Karuppannan & Shah Fahad & Aqil Tariq & B. G. Mousa & Faisal Mumtaz & Muhammad Aslam, 2022. "Spatiotemporal Variation in Land Use Land Cover in the Response to Local Climate Change Using Multispectral Remote Sensing Data," Land, MDPI, vol. 11(5), pages 1-19, April.
    2. Sandeep Kumar & Fulena Rajak, 2023. "Assessment of Urban Green Open Spaces of Micro- and Meso-Level Zones, Based on the Growth Pattern: Case of Patna City," Sustainability, MDPI, vol. 15(2), pages 1-29, January.
    3. Fahad Ahmed Shaikh & Mir Aftab Hussain Talpur & Imtiaz Ahmed Chandio & Saima Kalwar, 2022. "Factors Influencing Residential Location Choice towards Mixed Land-Use Development: An Empirical Evidence from Pakistan," Sustainability, MDPI, vol. 14(21), pages 1-25, November.
    4. Mirza Waleed & Muhammad Sajjad & Anthony Owusu Acheampong & Md. Tauhidul Alam, 2023. "Towards Sustainable and Livable Cities: Leveraging Remote Sensing, Machine Learning, and Geo-Information Modelling to Explore and Predict Thermal Field Variance in Response to Urban Growth," Sustainability, MDPI, vol. 15(2), pages 1-27, January.
    5. Ge Wang & Ziqi Zhou & Jianguo Xia & Dinghua Ou & Jianbo Fei & Shunya Gong & Yuxiao Xiang, 2023. "Optimal Allocation of Territorial Space in the Minjiang River Basin Based on a Double Optimization Simulation Model," Land, MDPI, vol. 12(11), pages 1-26, October.
    6. Yanan Li & Linghua Duo & Ming Zhang & Zhenhua Wu & Yanjun Guan, 2021. "Assessment and Estimation of the Spatial and Temporal Evolution of Landscape Patterns and Their Impact on Habitat Quality in Nanchang, China," Land, MDPI, vol. 10(10), pages 1-19, October.
    7. Hoyong Kim & Donghyun Kim, 2022. "Changes in Urban Growth Patterns in Busan Metropolitan City, Korea: Population and Urbanized Areas," Land, MDPI, vol. 11(8), pages 1-18, August.
    8. Iwona Cieślak & Andrzej Biłozor & Luca Salvati, 2022. "Land as a Basis for Recent Progress in the Study of Urbanization Dynamics," Land, MDPI, vol. 11(1), pages 1-4, January.
    9. Jing Liu & Chunchun Hu & Xionghua Kang & Fei Chen, 2023. "A Loosely Coupled Model for Simulating and Predicting Land Use Changes," Land, MDPI, vol. 12(1), pages 1-19, January.
    10. Oznur Isinkaralar & Kaan Isinkaralar & Dilara Yilmaz, 2023. "Climate-related spatial reduction risk of agricultural lands on the Mediterranean coast in Türkiye and scenario-based modelling of urban growth," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 13199-13217, November.
    11. Milad Asadi & Amir Oshnooei-Nooshabadi & Samira-Sadat Saleh & Fattaneh Habibnezhad & Sonia Sarafraz-Asbagh & John Lodewijk Van Genderen, 2022. "Urban Sprawl Simulation Mapping of Urmia (Iran) by Comparison of Cellular Automata–Markov Chain and Artificial Neural Network (ANN) Modeling Approach," Sustainability, MDPI, vol. 14(23), pages 1-16, November.
    12. Umer Khalil & Umar Azam & Bilal Aslam & Israr Ullah & Aqil Tariq & Qingting Li & Linlin Lu, 2022. "Developing a Spatiotemporal Model to Forecast Land Surface Temperature: A Way Forward for Better Town Planning," Sustainability, MDPI, vol. 14(19), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    2. Mehdi Sheikh Goodarzi & Yousef Sakieh & Shabnam Navardi, 2017. "Scenario-based urban growth allocation in a rapidly developing area: a modeling approach for sustainability analysis of an urban-coastal coupled system," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(3), pages 1103-1126, June.
    3. Liu, Tie-Ying & Su, Chi-Wei, 2021. "Is transportation improving urbanization in China?," Socio-Economic Planning Sciences, Elsevier, vol. 77(C).
    4. Katarzyna Kocur-Bera & Anna Lyjak, 2021. "Analysis of Changes in Agricultural Use of Land After Poland’s Accession to the EU," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 517-533.
    5. Rabia Soomro & Irfan Ahmed Memon & Agha Faisal Habib Pathan & Waqas Ahmed Mahar & Noman Sahito & Zulfiqar Ali Lashari, 2022. "Factors That Influence Travelers’ Willingness to Adopt Bus Rapid Transit (Green Line) Service in Karachi," Sustainability, MDPI, vol. 14(16), pages 1-35, August.
    6. Michel Opelele Omeno & Ying Yu & Wenyi Fan & Tolerant Lubalega & Chen Chen & Claude Kachaka Sudi Kaiko, 2021. "Analysis of the Impact of Land-Use/Land-Cover Change on Land-Surface Temperature in the Villages within the Luki Biosphere Reserve," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    7. Han, Yu & Jia, Haifeng, 2017. "Simulating the spatial dynamics of urban growth with an integrated modeling approach: A case study of Foshan, China," Ecological Modelling, Elsevier, vol. 353(C), pages 107-116.
    8. Nick Malleson & Andrew Evans & Tony Jenkins, 2009. "An Agent-Based Model of Burglary," Environment and Planning B, , vol. 36(6), pages 1103-1123, December.
    9. Jing Yang & Feng Shi & Yizhong Sun & Jie Zhu, 2019. "A Cellular Automata Model Constrained by Spatiotemporal Heterogeneity of the Urban Development Strategy for Simulating Land-use Change: A Case Study in Nanjing City, China," Sustainability, MDPI, vol. 11(15), pages 1-19, July.
    10. Hashem Dadashpoor & Hossein Panahi, 2021. "Exploring an integrated spatially model for land-use scenarios simulation in a metropolitan region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13628-13649, September.
    11. Li, Sheng & Nadolnyak, Denis & Hartarska, Valentina, 2019. "Agricultural land conversion: Impacts of economic and natural risk factors in a coastal area," Land Use Policy, Elsevier, vol. 80(C), pages 380-390.
    12. Sarah Hasan & Wenzhong Shi & Xiaolin Zhu & Sawaid Abbas & Hafiz Usman Ahmed Khan, 2020. "Future Simulation of Land Use Changes in Rapidly Urbanizing South China Based on Land Change Modeler and Remote Sensing Data," Sustainability, MDPI, vol. 12(11), pages 1-24, May.
    13. Harik, G. & Alameddine, I. & Zurayk, R. & El-Fadel, M., 2023. "Uncertainty in forecasting land cover land use at a watershed scale: Towards enhanced sustainable land management," Ecological Modelling, Elsevier, vol. 486(C).
    14. Zhang, Chunxiao & Chen, Min & Li, Rongrong & Fang, Chaoyang & Lin, Hui, 2016. "What's going on about geo-process modeling in virtual geographic environments (VGEs)," Ecological Modelling, Elsevier, vol. 319(C), pages 147-154.
    15. Dimitris Ballas & Richard Kingston & John Stillwell & Jianhui Jin, 2007. "Building a Spatial Microsimulation-Based Planning Support System for Local Policy Making," Environment and Planning A, , vol. 39(10), pages 2482-2499, October.
    16. Xiaoli Hu & Xin Li & Ling Lu, 2018. "Modeling the Land Use Change in an Arid Oasis Constrained by Water Resources and Environmental Policy Change Using Cellular Automata Models," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    17. Yu Sun & Susanna Tong & Mao Fang & Y. Yang, 2013. "Exploring the effects of population growth on future land use change in the Las Vegas Wash watershed: an integrated approach of geospatial modeling and analytics," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 15(6), pages 1495-1515, December.
    18. Janka Lengyel & Seraphim Alvanides & Jan Friedrich, 2023. "Modelling the interdependence of spatial scales in urban systems," Environment and Planning B, , vol. 50(1), pages 182-197, January.
    19. Novak, D.C. & Sullivan, J.F. & Sentoff, K. & Dowds, J., 2020. "A framework to guide strategic disinvestment in roadway infrastructure considering social vulnerability," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 436-451.
    20. Luoman Pu, 2022. "Demarcation of Future Urban Rigid and Elastic Development Boundaries of the City of Haikou," Sustainability, MDPI, vol. 14(5), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:7:p:700-:d:587555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.