IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v24y2022i2d10.1007_s10668-021-01525-7.html
   My bibliography  Save this article

Investigating organizational sustainable development through an integrated method of interval-valued intuitionistic fuzzy AHP and WASPAS

Author

Listed:
  • M. Alimohammadlou

    (Shiraz University)

  • Z. Khoshsepehr

    (Shiraz University)

Abstract

Sustainable development is a process through which the needs of the present generation are satisfied without damaging the benefits or resources for meeting the needs of succeeding generations. Sustainable development could help to realize a society with far better conditions than those in today’s society, especially for future generations. This study proposes a comprehensive multi-criteria decision-making (MCDM) method that draws on interval-valued intuitionistic fuzzy (IVIF) sets to assess sustainable development at companies. The method proposed incorporates analytical hierarchy process (AHP) and weighted aggregated sum product assessment (WASPAS) under IVIF environment. An IVIF set is a powerful tool for dealing with uncertainty by taking degrees of membership and non-membership functions in an interval. The results of the IVIF-AHP showed that “ecologic impacts” had the highest weight among the main criteria. The study used IVIF-WASPAS to rank the companies in terms of organizational sustainable development. This study could provide practical guidelines for decision-makers seeking to implement sustainable development in their organizations. In order to validate robustness of the proposed method, sensitivity analyses are implemented. Also, at the end of the study, to prove the superiority of the proposed approach, a comparative analysis is employed.

Suggested Citation

  • M. Alimohammadlou & Z. Khoshsepehr, 2022. "Investigating organizational sustainable development through an integrated method of interval-valued intuitionistic fuzzy AHP and WASPAS," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2193-2224, February.
  • Handle: RePEc:spr:endesu:v:24:y:2022:i:2:d:10.1007_s10668-021-01525-7
    DOI: 10.1007/s10668-021-01525-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-01525-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-01525-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N Deepa & K Ganesan & Kathiravan Srinivasan & Chuan-Yu Chang, 2019. "Realizing Sustainable Development via Modified Integrated Weighting MCDM Model for Ranking Agrarian Dataset," Sustainability, MDPI, vol. 11(21), pages 1-20, October.
    2. Ren-Jie Mao & Jian-Xin You & Chun-Yan Duan & Lu-Ning Shao, 2019. "A Heterogeneous MCDM Framework for Sustainable Supplier Evaluation and Selection Based on the IVIF-TODIM Method," Sustainability, MDPI, vol. 11(18), pages 1-16, September.
    3. Dorin Maier & Mihaela Maftei & Andreea Maier & Gabriela Elena Bitan, 2019. "A Review of Product Innovation Management Literature in the Context of Organization Sustainable Development," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 21(S13), pages 816-816, November.
    4. Wustenhagen, Rolf & Wolsink, Maarten & Burer, Mary Jean, 2007. "Social acceptance of renewable energy innovation: An introduction to the concept," Energy Policy, Elsevier, vol. 35(5), pages 2683-2691, May.
    5. Bebbington, Jan & Brown, Judy & Frame, Bob, 2007. "Accounting technologies and sustainability assessment models," Ecological Economics, Elsevier, vol. 61(2-3), pages 224-236, March.
    6. Seyed Morteza Hatefi & Jolanta Tamošaitienė, 2018. "Construction Projects Assessment Based on the Sustainable Development Criteria by an Integrated Fuzzy AHP and Improved GRA Model," Sustainability, MDPI, vol. 10(4), pages 1-14, March.
    7. Seyed Meysam Khoshnava & Raheleh Rostami & Rosli Mohamad Zin & Dalia Štreimikiene & Alireza Yousefpour & Abbas Mardani & Melfi Alrasheedi, 2020. "Contribution of green infrastructure to the implementation of green economy in the context of sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(1), pages 320-342, January.
    8. Kuo-Jui Wu & Qing Chen & Yun Qi & Xiaoyue Jiang & Shuo Gao & Ming-Lang Tseng, 2019. "Sustainable Development Performance for Small and Medium Enterprises Using a Fuzzy Synthetic Method-DEMATEL," Sustainability, MDPI, vol. 11(15), pages 1-25, July.
    9. Büyüközkan, Gülçin & Karabulut, Yağmur & Mukul, Esin, 2018. "A novel renewable energy selection model for United Nations' sustainable development goals," Energy, Elsevier, vol. 165(PA), pages 290-302.
    10. Kumar, Abhishek & Sah, Bikash & Singh, Arvind R. & Deng, Yan & He, Xiangning & Kumar, Praveen & Bansal, R.C., 2017. "A review of multi criteria decision making (MCDM) towards sustainable renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 596-609.
    11. Liu, Gang, 2014. "Development of a general sustainability indicator for renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 611-621.
    12. Zenonas Turskis & Nikolaj Goranin & Assel Nurusheva & Seilkhan Boranbayev, 2019. "A Fuzzy WASPAS-Based Approach to Determine Critical Information Infrastructures of EU Sustainable Development," Sustainability, MDPI, vol. 11(2), pages 1-25, January.
    13. Govindan, Kannan & Shankar, K. Madan & Kannan, Devika, 2020. "Achieving sustainable development goals through identifying and analyzing barriers to industrial sharing economy: A framework development," International Journal of Production Economics, Elsevier, vol. 227(C).
    14. Melfi Alrasheedi & Abbas Mardani & Arunodaya R. Mishra & Dalia Streimikiene & Huchang Liao & Abdullah H. Al‐nefaie, 2021. "Evaluating the green growth indicators to achieve sustainable development: A novel extended interval‐valued intuitionistic fuzzy‐combined compromise solution approach," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 120-142, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuel Sousa & Maria Fatima Almeida & Rodrigo Calili, 2021. "Multiple Criteria Decision Making for the Achievement of the UN Sustainable Development Goals: A Systematic Literature Review and a Research Agenda," Sustainability, MDPI, vol. 13(8), pages 1-37, April.
    2. Büyüközkan, Gülçin & Karabulut, Yağmur & Mukul, Esin, 2018. "A novel renewable energy selection model for United Nations' sustainable development goals," Energy, Elsevier, vol. 165(PA), pages 290-302.
    3. Maarten Wolsink, 2020. "Framing in Renewable Energy Policies: A Glossary," Energies, MDPI, vol. 13(11), pages 1-31, June.
    4. Milad Kolagar & Seyed Mohammad Hassan Hosseini & Ramin Felegari & Parviz Fattahi, 2020. "Policy-making for renewable energy sources in search of sustainable development: a hybrid DEA-FBWM approach," Environment Systems and Decisions, Springer, vol. 40(4), pages 485-509, December.
    5. Ifaei, Pouya & Tayerani Charmchi, Amir Saman & Loy-Benitez, Jorge & Yang, Rebecca Jing & Yoo, ChangKyoo, 2022. "A data-driven analytical roadmap to a sustainable 2030 in South Korea based on optimal renewable microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Armenia Androniceanu & Oana Matilda Sabie, 2022. "Overview of Green Energy as a Real Strategic Option for Sustainable Development," Energies, MDPI, vol. 15(22), pages 1-35, November.
    7. Mohammad Ershadul Karim & Ridoan Karim & Md. Toriqul Islam & Firdaus Muhammad-Sukki & Nurul Aini Bani & Mohd Nabil Muhtazaruddin, 2019. "Renewable Energy for Sustainable Growth and Development: An Evaluation of Law and Policy of Bangladesh," Sustainability, MDPI, vol. 11(20), pages 1-30, October.
    8. Colla, Martin & Ioannou, Anastasia & Falcone, Gioia, 2020. "Critical review of competitiveness indicators for energy projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    9. Wen-Kuo Chen & Venkateswarlu Nalluri & Man-Li Lin & Ching-Torng Lin, 2021. "Identifying Decisive Socio-Political Sustainability Barriers in the Supply Chain of Banking Sector in India: Causality Analysis Using ISM and MICMAC," Mathematics, MDPI, vol. 9(3), pages 1-23, January.
    10. Marko M. Mihić & Zorica A. Dodevska & Marija Lj. Todorović & Vladimir Lj. Obradović & Dejan Č. Petrović, 2018. "Reducing Risks in Energy Innovation Projects: Complexity Theory Perspective," Sustainability, MDPI, vol. 10(9), pages 1-24, August.
    11. Mohammed Alghassab, 2023. "A Computational Case Study on Sustainable Energy Transition in the Kingdom of Saudi Arabia," Energies, MDPI, vol. 16(13), pages 1-18, July.
    12. Abteen Ijadi Maghsoodi & Arta Ijadi Maghsoodi & Amir Mosavi & Timon Rabczuk & Edmundas Kazimieras Zavadskas, 2018. "Renewable Energy Technology Selection Problem Using Integrated H-SWARA-MULTIMOORA Approach," Sustainability, MDPI, vol. 10(12), pages 1-18, November.
    13. Krzysztof Dmytrów & Beata Bieszk-Stolorz & Joanna Landmesser-Rusek, 2022. "Sustainable Energy in European Countries: Analysis of Sustainable Development Goal 7 Using the Dynamic Time Warping Method," Energies, MDPI, vol. 15(20), pages 1-17, October.
    14. Bortoluzzi, Mirian & Correia de Souza, Celso & Furlan, Marcelo, 2021. "Bibliometric analysis of renewable energy types using key performance indicators and multicriteria decision models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    15. Chia-Nan Wang & Jui-Chung Kao & Yen-Hui Wang & Van Thanh Nguyen & Viet Tinh Nguyen & Syed Tam Husain, 2021. "A Multicriteria Decision-Making Model for the Selection of Suitable Renewable Energy Sources," Mathematics, MDPI, vol. 9(12), pages 1-17, June.
    16. Endre Börcsök & Zoltán Ferencz & Veronika Groma & Ágnes Gerse & János Fülöp & Sándor Bozóki & János Osán & Szabina Török & Ákos Horváth, 2020. "Energy Supply Preferences as Multicriteria Decision Problems: Developing a System of Criteria from Survey Data," Energies, MDPI, vol. 13(15), pages 1-21, July.
    17. Paula Donaduzzi Rigo & Graciele Rediske & Carmen Brum Rosa & Natália Gava Gastaldo & Leandro Michels & Alvaro Luiz Neuenfeldt Júnior & Julio Cezar Mairesse Siluk, 2020. "Renewable Energy Problems: Exploring the Methods to Support the Decision-Making Process," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    18. Na Li & Rudi Hakvoort & Zofia Lukszo, 2021. "Cost Allocation in Integrated Community Energy Systems—Social Acceptance," Sustainability, MDPI, vol. 13(17), pages 1-24, September.
    19. Baumann, Manuel & Weil, Marcel & Peters, Jens F. & Chibeles-Martins, Nelson & Moniz, Antonio B., 2019. "A review of multi-criteria decision making approaches for evaluating energy storage systems for grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 516-534.
    20. Busola D. Akintayo & Oluwafemi E. Ige & Olubayo M. Babatunde & Oludolapo A. Olanrewaju, 2023. "Evaluation and Prioritization of Power-Generating Systems Using a Life Cycle Assessment and a Multicriteria Decision-Making Approach," Energies, MDPI, vol. 16(18), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:24:y:2022:i:2:d:10.1007_s10668-021-01525-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.