IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i15p3767-d388149.html
   My bibliography  Save this article

Energy Supply Preferences as Multicriteria Decision Problems: Developing a System of Criteria from Survey Data

Author

Listed:
  • Endre Börcsök

    (Centre for Energy Research, Konkoly-Thege M. út 29-31., 1121 Budapest, Hungary)

  • Zoltán Ferencz

    (Centre for Social Sciences Institute for Sociology Hungarian Academy of Sciences Centre of Excellence, Tóth Kálmán u. 4., 1097 Budapest, Hungary)

  • Veronika Groma

    (Centre for Energy Research, Konkoly-Thege M. út 29-31., 1121 Budapest, Hungary)

  • Ágnes Gerse

    (Centre for Energy Research, Konkoly-Thege M. út 29-31., 1121 Budapest, Hungary
    Ministry for Innovation and Technology, Fő u. 44-50., 1011 Budapest, Hungary)

  • János Fülöp

    (Institute for Computer Science and Control, Kende u. 13., 1111 Budapest, Hungary)

  • Sándor Bozóki

    (Institute for Computer Science and Control, Kende u. 13., 1111 Budapest, Hungary)

  • János Osán

    (Centre for Energy Research, Konkoly-Thege M. út 29-31., 1121 Budapest, Hungary)

  • Szabina Török

    (Centre for Energy Research, Konkoly-Thege M. út 29-31., 1121 Budapest, Hungary)

  • Ákos Horváth

    (Centre for Energy Research, Konkoly-Thege M. út 29-31., 1121 Budapest, Hungary)

Abstract

Decision support techniques have a key role in investment and strategic decisions in the energy sector. As complex decision-making problems involve the simultaneous consideration of an extensive set of different factors, it is an essential part of the methodology to define, structure, and integrate the criteria. The main purpose of the study was to develop a system of criteria and weights that are suitable for general application in the energy sector and can best describe the decision-making mechanisms present in society and various social groups. When developing the system of criteria, we moved away from the hierarchical approach related to the three pillars of sustainability; therefore, a wide range of notions were assessed based on a population representative survey data collected in Hungary. We used algebraic methods to explore the internal structure of the set of criteria that had been previously defined by means of social sciences, while the importance weights were specified by applying the method of analytic network process. Furthermore, the ranking of heating and electricity generation alternatives were determined.

Suggested Citation

  • Endre Börcsök & Zoltán Ferencz & Veronika Groma & Ágnes Gerse & János Fülöp & Sándor Bozóki & János Osán & Szabina Török & Ákos Horváth, 2020. "Energy Supply Preferences as Multicriteria Decision Problems: Developing a System of Criteria from Survey Data," Energies, MDPI, vol. 13(15), pages 1-21, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3767-:d:388149
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/15/3767/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/15/3767/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rafael Ninno Muniz & Stéfano Frizzo Stefenon & William Gouvêa Buratto & Ademir Nied & Luiz Henrique Meyer & Erlon Cristian Finardi & Ricardo Marino Kühl & José Alberto Silva de Sá & Brigida Ramati Per, 2020. "Tools for Measuring Energy Sustainability: A Comparative Review," Energies, MDPI, vol. 13(9), pages 1-27, May.
    2. Kumar, Abhishek & Sah, Bikash & Singh, Arvind R. & Deng, Yan & He, Xiangning & Kumar, Praveen & Bansal, R.C., 2017. "A review of multi criteria decision making (MCDM) towards sustainable renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 596-609.
    3. Greenberg, Michael, 2009. "Energy sources, public policy, and public preferences: Analysis of US national and site-specific data," Energy Policy, Elsevier, vol. 37(8), pages 3242-3249, August.
    4. Bertsch, Valentin & Hyland, Marie & Mahony, Michael, 2017. "What drives people's opinions of electricity infrastructure? Empirical evidence from Ireland," Energy Policy, Elsevier, vol. 106(C), pages 472-497.
    5. Danae Diakoulaki & Carlos Henggeler Antunes & António Gomes Martins, 2005. "MCDA and Energy Planning," International Series in Operations Research & Management Science, in: Multiple Criteria Decision Analysis: State of the Art Surveys, chapter 0, pages 859-890, Springer.
    6. Hartmann, Bálint & Börcsök, Endre & Groma, Veronika Oláhné & Osán, János & Talamon, Attila & Török, Szabina & Alföldy-Boruss, Márk, 2017. "Multi-criteria revision of the Hungarian Renewable Energy Utilization Action Plan – Review of the aspect of economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1187-1200.
    7. Bertsch, Valentin & Hall, Margeret & Weinhardt, Christof & Fichtner, Wolf, 2016. "Public acceptance and preferences related to renewable energy and grid expansion policy: Empirical insights for Germany," Energy, Elsevier, vol. 114(C), pages 465-477.
    8. Cannemi, Marco & García-Melón, Mónica & Aragonés-Beltrán, Pablo & Gómez-Navarro, Tomás, 2014. "Modeling decision making as a support tool for policy making on renewable energy development," Energy Policy, Elsevier, vol. 67(C), pages 127-137.
    9. Wustenhagen, Rolf & Wolsink, Maarten & Burer, Mary Jean, 2007. "Social acceptance of renewable energy innovation: An introduction to the concept," Energy Policy, Elsevier, vol. 35(5), pages 2683-2691, May.
    10. Chatzimouratidis, Athanasios I. & Pilavachi, Petros A., 2009. "Sensitivity analysis of technological, economic and sustainability evaluation of power plants using the analytic hierarchy process," Energy Policy, Elsevier, vol. 37(3), pages 788-798, March.
    11. Cavallaro, Fausto & Ciraolo, Luigi, 2005. "A multicriteria approach to evaluate wind energy plants on an Italian island," Energy Policy, Elsevier, vol. 33(2), pages 235-244, January.
    12. Tsoutsos, Theocharis & Drandaki, Maria & Frantzeskaki, Niki & Iosifidis, Eleftherios & Kiosses, Ioannis, 2009. "Sustainable energy planning by using multi-criteria analysis application in the island of Crete," Energy Policy, Elsevier, vol. 37(5), pages 1587-1600, May.
    13. Nis Bertelsen & Brian Vad Mathiesen, 2020. "EU-28 Residential Heat Supply and Consumption: Historical Development and Status," Energies, MDPI, vol. 13(8), pages 1-21, April.
    14. Pinar Ertor Akyazi & Fikret Adaman & Begum Ozkaynak & Unal Zenginobuz, 2012. "Citizens’ Preferences over Nuclear and Renewable Energy Sources: Evidence from Turkey," Working Papers 2012/01, Bogazici University, Department of Economics.
    15. Ertör-Akyazı, Pınar & Adaman, Fikret & Özkaynak, Begüm & Zenginobuz, Ünal, 2012. "Citizens’ preferences on nuclear and renewable energy sources: Evidence from Turkey," Energy Policy, Elsevier, vol. 47(C), pages 309-320.
    16. Maarten Wolsink, 2020. "Framing in Renewable Energy Policies: A Glossary," Energies, MDPI, vol. 13(11), pages 1-31, June.
    17. Rahel Renata Tanujaya & Chul-Yong Lee & JongRoul Woo & Sung-Yoon Huh & Min-Kyu Lee, 2020. "Quantifying Public Preferences for Community-Based Renewable Energy Projects in South Korea," Energies, MDPI, vol. 13(9), pages 1-13, May.
    18. Manley, Dawn K. & Hines, Valerie A. & Jordan, Matthew W. & Stoltz, Ronald E., 2013. "A survey of energy policy priorities in the United States: Energy supply security, economics, and the environment," Energy Policy, Elsevier, vol. 60(C), pages 687-696.
    19. Chatzimouratidis, Athanasios I. & Pilavachi, Petros A., 2008. "Multicriteria evaluation of power plants impact on the living standard using the analytic hierarchy process," Energy Policy, Elsevier, vol. 36(3), pages 1074-1089, March.
    20. Simon Pezzutto & Silvia Croce & Stefano Zambotti & Lukas Kranzl & Antonio Novelli & Pietro Zambelli, 2019. "Assessment of the Space Heating and Domestic Hot Water Market in Europe—Open Data and Results," Energies, MDPI, vol. 12(9), pages 1-16, May.
    21. Aragonés-Beltrán, P. & Chaparro-González, F. & Pastor-Ferrando, J.P. & Rodríguez-Pozo, F., 2010. "An ANP-based approach for the selection of photovoltaic solar power plant investment projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 249-264, January.
    22. Paweł Ziemba, 2019. "Inter-Criteria Dependencies-Based Decision Support in the Sustainable wind Energy Management," Energies, MDPI, vol. 12(4), pages 1-29, February.
    23. Chatzimouratidis, Athanasios I. & Pilavachi, Petros A., 2009. "Technological, economic and sustainability evaluation of power plants using the Analytic Hierarchy Process," Energy Policy, Elsevier, vol. 37(3), pages 778-787, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adrienne Csizmady & Zoltán Ferencz & Lea Kőszeghy & Gergely Tóth, 2021. "Beyond the Energy Poor/Non Energy Poor Divide: Energy Vulnerability and Mindsets on Energy Generation Modes in Hungary," Energies, MDPI, vol. 14(20), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.
    2. Hottenroth, H. & Sutardhio, C. & Weidlich, A. & Tietze, I. & Simon, S. & Hauser, W. & Naegler, T. & Becker, L. & Buchgeister, J. & Junne, T. & Lehr, U. & Scheel, O. & Schmidt-Scheele, R. & Ulrich, P. , 2022. "Beyond climate change. Multi-attribute decision making for a sustainability assessment of energy system transformation pathways," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Cannemi, Marco & García-Melón, Mónica & Aragonés-Beltrán, Pablo & Gómez-Navarro, Tomás, 2014. "Modeling decision making as a support tool for policy making on renewable energy development," Energy Policy, Elsevier, vol. 67(C), pages 127-137.
    4. Alkan, Ömer & Albayrak, Özlem Karadağ, 2020. "Ranking of renewable energy sources for regions in Turkey by fuzzy entropy based fuzzy COPRAS and fuzzy MULTIMOORA," Renewable Energy, Elsevier, vol. 162(C), pages 712-726.
    5. Büyüközkan, Gülçin & Karabulut, Yağmur, 2017. "Energy project performance evaluation with sustainability perspective," Energy, Elsevier, vol. 119(C), pages 549-560.
    6. Troldborg, Mads & Heslop, Simon & Hough, Rupert L., 2014. "Assessing the sustainability of renewable energy technologies using multi-criteria analysis: Suitability of approach for national-scale assessments and associated uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1173-1184.
    7. Arndt, Christoph, 2023. "Climate change vs energy security? The conditional support for energy sources among Western Europeans," Energy Policy, Elsevier, vol. 174(C).
    8. Jamal, Taskin & Urmee, Tania & Shafiullah, G.M., 2020. "Planning of off-grid power supply systems in remote areas using multi-criteria decision analysis," Energy, Elsevier, vol. 201(C).
    9. Seungkook Roh & Jin Won Lee & Qingchang Li, 2019. "Effects of Rank-Ordered Feature Perceptions of Energy Sources on the Choice of the Most Acceptable Power Plant for a Neighborhood: An Investigation Using a South Korean Nationwide Sample," Sustainability, MDPI, vol. 11(6), pages 1-21, March.
    10. Anshelm, Jonas & Simon, Haikola, 2016. "Power production and environmental opinions – Environmentally motivated resistance to wind power in Sweden," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1545-1555.
    11. Kurka, Thomas & Blackwood, David, 2013. "Selection of MCA methods to support decision making for renewable energy developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 225-233.
    12. Astrid Buchmayr & Luc Van Ootegem & Jo Dewulf & Elsy Verhofstadt, 2021. "Understanding Attitudes towards Renewable Energy Technologies and the Effect of Local Experiences," Energies, MDPI, vol. 14(22), pages 1-23, November.
    13. Ahmad, Salman & Tahar, Razman Mat, 2014. "Selection of renewable energy sources for sustainable development of electricity generation system using analytic hierarchy process: A case of Malaysia," Renewable Energy, Elsevier, vol. 63(C), pages 458-466.
    14. Kurka, Thomas & Blackwood, David, 2013. "Participatory selection of sustainability criteria and indicators for bioenergy developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 92-102.
    15. Mainali, Brijesh & Silveira, Semida, 2015. "Using a sustainability index to assess energy technologies for rural electrification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1351-1365.
    16. Stein, Eric W., 2013. "A comprehensive multi-criteria model to rank electric energy production technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 640-654.
    17. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhao, Jun-Hong, 2009. "Review on multi-criteria decision analysis aid in sustainable energy decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2263-2278, December.
    18. Liu, Gang, 2014. "Development of a general sustainability indicator for renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 611-621.
    19. Milad Kolagar & Seyed Mohammad Hassan Hosseini & Ramin Felegari & Parviz Fattahi, 2020. "Policy-making for renewable energy sources in search of sustainable development: a hybrid DEA-FBWM approach," Environment Systems and Decisions, Springer, vol. 40(4), pages 485-509, December.
    20. Wu, Yunna & Xu, Chuanbo & Zhang, Ting, 2018. "Evaluation of renewable power sources using a fuzzy MCDM based on cumulative prospect theory: A case in China," Energy, Elsevier, vol. 147(C), pages 1227-1239.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3767-:d:388149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.