IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v24y2022i12d10.1007_s10668-021-02018-3.html
   My bibliography  Save this article

COVID-19 restrictions and greenhouse gas savings in selected Islamic and MENA countries: An environmental input–output approach for climate policies

Author

Listed:
  • Mahdi Ghaemi Asl

    (Kharazmi University)

  • Sajad Rajabi

    (Imam Sadiq University)

  • Muhammad Irfan

    (University of Gujrat)

  • Reza Ranjbaran

    (Imam Sadiq University)

  • Mohammad Ghasemi Doudkanlou

    (University of Siena)

Abstract

As addressed by many studies, greenhouse gas has a significant impact on the different aspects of life and more importantly on the whole environment. The excessive emission of green gas leads to climate change which is regarded as one of the most significant challenges of 21 century. Hence, in this regard, this paper has addressed the changing greenhouse gas (GHG) emissions in 18 countries of the MENA region. For this purpose, ten different scenarios of this disease's future status and its restrictions were considered in an input–output modelling framework. The empirical results indicated that the emission of greenhouse gas is reduced under all scenarios. However, some countries experience more reduction due to the restriction because of COVID-19 like Syria, Iran, Yemen and Lebenon. Based on the ninth scenario, Iran and Syria have the highest reduction in emission of greenhouse gas by 13.1 and 13.8 per cent, and based on the tenth scenario, Lebenan and Syria will experience the highest reduction in emission by about 13.1 and 17.9 per cent. The results show that according to scenario 10 (explosive intensification of the pandemic without the wave subsiding over a while) and scenario 9 (the pandemic worsens step by step without subsiding over a while), Syria and Iran have the highest reduction in greenhouse gas emissions, respectively. According to scenario 1 (rapid and complete control of disease), Bahrain, Qatar, and Kuwait have the lowest reduction in GHG emissions. Besides, the study draws several fruitful implications regarding environmental concerns as sectoral analysis such as Hotels and Restaurants, Retail Trade, Fishing, Wholesale Trade, and Transport sectors. Moreover, policymakers should be alert that notwithstanding all limitations, Private Households and Public Administration develop their emissions during the pandemic since quarantine intensifies the supply of these services. Surprisingly, none of the policy restrictions have a significant impact on GHG emissions from Education, Health, and Other Services, Petroleum, Chemical, and Non-Metallic Mineral Products, Textiles and Wearing Apparel, and Re-export & Re-import, demonstrating the robust and established nature of these sectors' activities. To control the emissions of the quarantine-neutral sectors, long- and mid-term structural and environmental policies should be considered. The researchers are guided by the novel implications in terms of how various industries might reduce emissions in different ways. Graphical abstract

Suggested Citation

  • Mahdi Ghaemi Asl & Sajad Rajabi & Muhammad Irfan & Reza Ranjbaran & Mohammad Ghasemi Doudkanlou, 2022. "COVID-19 restrictions and greenhouse gas savings in selected Islamic and MENA countries: An environmental input–output approach for climate policies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 13937-13989, December.
  • Handle: RePEc:spr:endesu:v:24:y:2022:i:12:d:10.1007_s10668-021-02018-3
    DOI: 10.1007/s10668-021-02018-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-02018-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-02018-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Warwick McKibbin & Roshen Fernando, 2021. "The Global Macroeconomic Impacts of COVID-19: Seven Scenarios," Asian Economic Papers, MIT Press, vol. 20(2), pages 1-30, Summer.
    2. Iqbal, Najaf & Fareed, Zeeshan & Wan, Guangcai & Shahzad, Farrukh, 2021. "Asymmetric nexus between COVID-19 outbreak in the world and cryptocurrency market," International Review of Financial Analysis, Elsevier, vol. 73(C).
    3. Azadeh, A. & Tarverdian, S., 2007. "Integration of genetic algorithm, computer simulation and design of experiments for forecasting electrical energy consumption," Energy Policy, Elsevier, vol. 35(10), pages 5229-5241, October.
    4. ten Raa,Thijs, 2006. "The Economics of Input-Output Analysis," Cambridge Books, Cambridge University Press, number 9780521602679.
    5. Tehreem Fatima & Umer Shahzad & Lianbiao Cui, 2021. "Renewable and nonrenewable energy consumption, trade and CO2 emissions in high emitter countries: does the income level matter?," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 64(7), pages 1227-1251, June.
    6. Kaygusuz, Kamil, 2009. "Energy and environmental issues relating to greenhouse gas emissions for sustainable development in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 253-270, January.
    7. Haddad, Eduardo Amaral & Perobelli, Fernando Salgueiro & Araújo, Inácio Fernandes, 2020. "Input-Output Analysis of COVID-19: Methodology for Assessing the Impacts of Lockdown Measures," TD NEREUS 1-2020, Núcleo de Economia Regional e Urbana da Universidade de São Paulo (NEREUS).
    8. Graciela Chichilnisky, 1997. "What Is Sustainable Development?," Land Economics, University of Wisconsin Press, vol. 73(4), pages 467-491.
    9. Assaad Ghazouani & Wanjun Xia & Mehdi Ben Jebli & Umer Shahzad, 2020. "Exploring the Role of Carbon Taxation Policies on CO 2 Emissions: Contextual Evidence from Tax Implementation and Non-Implementation European Countries," Sustainability, MDPI, vol. 12(20), pages 1-16, October.
    10. Serhiy Lyeonov & Tetyana Pimonenko & Yuriy Bilan & Dalia Štreimikienė & Grzegorz Mentel, 2019. "Assessment of Green Investments’ Impact on Sustainable Development: Linking Gross Domestic Product Per Capita, Greenhouse Gas Emissions and Renewable Energy," Energies, MDPI, vol. 12(20), pages 1-12, October.
    11. Manfred Lenzen & Mengyu Li & Arunima Malik & Francesco Pomponi & Ya-Yen Sun & Thomas Wiedmann & Futu Faturay & Jacob Fry & Blanca Gallego & Arne Geschke & Jorge Gómez-Paredes & Keiichiro Kanemoto & St, 2020. "Global socio-economic losses and environmental gains from the Coronavirus pandemic," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-13, July.
    12. Erik Dietzenbacher & Michael L. Lahr, 2013. "Expanding Extractions," Economic Systems Research, Taylor & Francis Journals, vol. 25(3), pages 341-360, September.
    13. Liberalesso, Tiago & Oliveira Cruz, Carlos & Matos Silva, Cristina & Manso, Maria, 2020. "Green infrastructure and public policies: An international review of green roofs and green walls incentives," Land Use Policy, Elsevier, vol. 96(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xie, Dongzhou & Wang, Tongtao & Li, Long & Guo, Kai & Ben, Jianhua & Wang, Duocai & Chai, Guoxing, 2023. "Modeling debrining of an energy storage salt cavern considering the effects of temperature," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Damien Bazin & Emna Omri & Nouri Chtourou, 2015. "Solar Thermal Energy for Sustainable Development in Tunisia," Post-Print halshs-01070616, HAL.
    2. Jorge Antunes & Luis Alberiko Gil-Alana & Rossana Riccardi & Yong Tan & Peter Wanke, 2022. "Unveiling endogeneity and temporal dependence in energy prices and demand in Iberian countries: a stochastic hidden Markov model approach," Annals of Operations Research, Springer, vol. 313(1), pages 191-229, June.
    3. Tehreem Fatima & Grzegorz Mentel & Buhari Doğan & Zeeshan Hashim & Umer Shahzad, 2022. "Investigating the role of export product diversification for renewable, and non-renewable energy consumption in GCC (gulf cooperation council) countries: does the Kuznets hypothesis exist?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8397-8417, June.
    4. Dexuan Sha & Anusha Srirenganathan Malarvizhi & Qian Liu & Yifei Tian & You Zhou & Shiyang Ruan & Rui Dong & Kyla Carte & Hai Lan & Zifu Wang & Chaowei Yang, 2020. "A State-Level Socioeconomic Data Collection of the United States for COVID-19 Research," Data, MDPI, vol. 5(4), pages 1-18, December.
    5. Maeno, Keitaro & Tokito, Shohei & Kagawa, Shigemi, 2022. "CO2 mitigation through global supply chain restructuring," Energy Economics, Elsevier, vol. 105(C).
    6. Cottafava, Dario & Gastaldo, Michele & Quatraro, Francesco & Santhiá, Cristina, 2022. "Modeling economic losses and greenhouse gas emissions reduction during the COVID-19 pandemic: Past, present, and future scenarios for Italy," Economic Modelling, Elsevier, vol. 110(C).
    7. Omri, Emna & Chtourou, Nouri & Bazin, Damien, 2015. "Solar thermal energy for sustainable development in Tunisia: The case of the PROSOL project," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1312-1323.
    8. Umer Shahzad & Magdalena Radulescu & Syed Rahim & Cem Isik & Zahid Yousaf & Stefan Alexandru Ionescu, 2021. "Do Environment-Related Policy Instruments and Technologies Facilitate Renewable Energy Generation? Exploring the Contextual Evidence from Developed Economies," Energies, MDPI, vol. 14(3), pages 1-25, January.
    9. Alexandre A. Porsse & Kênia B. de Souza & Terciane S. Carvalho & Vinícius A. Vale, 2020. "The economic impacts of COVID‐19 in Brazil based on an interregional CGE approach," Regional Science Policy & Practice, Wiley Blackwell, vol. 12(6), pages 1105-1121, December.
    10. Assaf, Ata & Mokni, Khaled & Yousaf, Imran & Bhandari, Avishek, 2023. "Long memory in the high frequency cryptocurrency markets using fractal connectivity analysis: The impact of COVID-19," Research in International Business and Finance, Elsevier, vol. 64(C).
    11. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    12. Mazen A. Al-Sinan & Abdulaziz A. Bubshait & Fatimah Alamri, 2023. "Saudi Arabia’s Journey toward Net-Zero Emissions: Progress and Challenges," Energies, MDPI, vol. 16(2), pages 1-24, January.
    13. George, Ammu & Li, Changtai & Lim, Jing Zhi & Xie, Taojun, 2021. "From SARS to COVID-19: The evolving role of China-ASEAN production network," Economic Modelling, Elsevier, vol. 101(C).
    14. Phurichai Rungcharoenkitkul, 2021. "Macroeconomic effects of COVID‐19: A mid‐term review," Pacific Economic Review, Wiley Blackwell, vol. 26(4), pages 439-458, October.
    15. Tolcha, Tassew Dufera, 2023. "The state of Africa's air transport market amid COVID-19, and forecasts for recovery," Journal of Air Transport Management, Elsevier, vol. 108(C).
    16. Grant Allan & Kevin Connolly & Peter McGregor & Andrew G Ross, 2019. "Economic activity supported by offshore wind: a hypothetical extraction study," Working Papers 1911, University of Strathclyde Business School, Department of Economics.
    17. A. G. Aganbegyan & A. N. Klepach & B. N. Porfiryev & M. N. Uzyakov & A. A. Shirov, 2020. "Post-Pandemic Recovery: The Russian Economy and the Transition to Sustainable Social and Economic Development," Studies on Russian Economic Development, Springer, vol. 31(6), pages 599-605, November.
    18. Niculaescu, Corina E. & Sangiorgi, Ivan & Bell, Adrian R., 2023. "Does personal experience with COVID-19 impact investment decisions? Evidence from a survey of US retail investors," International Review of Financial Analysis, Elsevier, vol. 88(C).
    19. Alf Hornborg, 2021. "Beyond the Image of COVID-19 as Nature’s Revenge: Understanding Globalized Capitalism through an Epidemiology of Money," Sustainability, MDPI, vol. 13(9), pages 1-11, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:24:y:2022:i:12:d:10.1007_s10668-021-02018-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.