IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v1y1999i3p297-313.html
   My bibliography  Save this article

Agroecological Implications of the System of Rice Intensification (SRI) in Madagascar

Author

Listed:
  • Norman Uphoff

Abstract

No abstract is available for this item.

Suggested Citation

  • Norman Uphoff, 1999. "Agroecological Implications of the System of Rice Intensification (SRI) in Madagascar," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 1(3), pages 297-313, September.
  • Handle: RePEc:spr:endesu:v:1:y:1999:i:3:p:297-313
    DOI: 10.1023/A:1010043325776
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1010043325776
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1010043325776?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guera, L.C. & Bhuiyan, S.I. & Tuong, T.P. & Barker, R., 1998. "Producing More Rice with Less Water from Irrigated Systems," IRRI Discussion Papers 287568, International Rice Research Institute (IRRI).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ly, Proyuth & Jensen, Lars Stoumann & Bruun, Thilde Bech & Rutz, Dominik & de Neergaard, Andreas, 2012. "The System of Rice Intensification: Adapted practices, reported outcomes and their relevance in Cambodia," Agricultural Systems, Elsevier, vol. 113(C), pages 16-27.
    2. Senthilkumar, K. & Bindraban, P.S. & de Boer, W. & de Ridder, N. & Thiyagarajan, T.M. & Giller, K.E., 2009. "Characterising rice-based farming systems to identify opportunities for adopting water efficient cultivation methods in Tamil Nadu, India," Agricultural Water Management, Elsevier, vol. 96(12), pages 1851-1860, December.
    3. Marenya, Paswel P. & Barrett, Christopher B., 2007. "Household-level determinants of adoption of improved natural resources management practices among smallholder farmers in western Kenya," Food Policy, Elsevier, vol. 32(4), pages 515-536, August.
    4. Tavseef Mairaj Shah & Sumbal Tasawwar & Ralf Otterpohl, 2021. "Agroecology for Food and Water Security in Times of Climate Consciousness: A Bibliometric Analysis of Peer-Reviewed Literature Published from 1990 to 2020," Sustainability, MDPI, vol. 13(9), pages 1-10, April.
    5. Shikha Pandey & Parmod Kumar, 2019. "Determinants of farm-level adoption of system of rice and wheat intensification in Gaya, Bihar," Working Papers 434, Institute for Social and Economic Change, Bangalore.
    6. C. Shambu Prasad, 2006. "System of Rice Intensification in India: Innovation History and Institutional Challenges," Working Papers id:723, eSocialSciences.
    7. Yuko Nakano & Yuki Tanaka & Keijiro Otsuka, 2018. "Impact of training on the intensification of rice farming: evidence from rainfed areas in Tanzania," Agricultural Economics, International Association of Agricultural Economists, vol. 49(2), pages 193-202, March.
    8. Ibrahim L. Kadigi & Khamaldin D. Mutabazi & Damas Philip & James W. Richardson & Jean-Claude Bizimana & Winfred Mbungu & Henry F. Mahoo & Stefan Sieber, 2020. "An Economic Comparison between Alternative Rice Farming Systems in Tanzania Using a Monte Carlo Simulation Approach," Sustainability, MDPI, vol. 12(16), pages 1-22, August.
    9. Herdt, Robert W., 2001. "Changing Priorities for International Agricultural Research," Distinguished Economist Lectures 7659, CIMMYT: International Maize and Wheat Improvement Center.
    10. Berkhout, Ezra & Glover, Dominic & Kuyvenhoven, Arie, 2015. "On-farm impact of the System of Rice Intensification (SRI): Evidence and knowledge gaps," Agricultural Systems, Elsevier, vol. 132(C), pages 157-166.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amaral, Luis G.H. do & Righes, Afranio A. & Filho, Paulo da S. e Souza & Costa, Rafael Dalla, 2005. "Automatic regulator for channel flow control on flooded rice," Agricultural Water Management, Elsevier, vol. 75(3), pages 184-193, July.
    2. Hazell, Peter B.R., 2009. "The Asian Green Revolution:," IFPRI discussion papers 911, International Food Policy Research Institute (IFPRI).
    3. Cook, Simon, 2006. "Agricultural water productivity: issues, concepts and approaches," IWMI Working Papers H039744, International Water Management Institute.
    4. Panigrahi, B. & Panda, S. N. & Mull, R., 2001. "Simulation of water harvesting potential in rainfed ricelands using water balance model," Agricultural Systems, Elsevier, vol. 69(3), pages 165-182, September.
    5. Oliver, M.M.H & Talukder, M.S.U & Ahmed, M., 2008. "Alternate wetting and drying irrigation for rice cultivation," Journal of the Bangladesh Agricultural University, Bangladesh Agricultural University Research System (BAURES), vol. 6.
    6. Ninan, K. N. & Izumida, Y., 2008. "Water productivity in agriculture: a review of empirical evidence for selected Asian countries and India," Conference Papers h042901, International Water Management Institute.
    7. Tejendra Chapagain & Andrew Riseman & Eiji Yamaji, 2011. "Achieving More with Less Water: Alternate Wet and Dry Irrigation (AWDI) as an Alternative to the Conventional Water Management Practices in Rice Farming," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 3(3), pages 1-3, September.
    8. Kijne, Jacob W., 2003. "Water productivity under saline conditions," Book Chapters,, International Water Management Institute.
    9. Kijne, Jacob W., 2003. "Water productivity under saline conditions," IWMI Research Reports 158360, International Water Management Institute.
    10. Maraseni, Tek Narayan & Mushtaq, Shahbaz & Hafeez, Mohsin & Maroulis, Jerry, 2010. "Greenhouse gas implications of water reuse in the Upper Pumpanga River Integrated Irrigation System, Philippines," Agricultural Water Management, Elsevier, vol. 97(3), pages 382-388, March.
    11. Takeda, Naoya & López-Galvis, Lorena & Pineda, Dario & Castilla, Armando & Takahashi, Taro & Fukuda, Shinji & Okada, Kensuke, 2019. "Evaluation of water dynamics of contour-levee irrigation system in sloped rice fields in Colombia," Agricultural Water Management, Elsevier, vol. 217(C), pages 107-118.
    12. Qin, Jiangtao & Hu, Feng & Zhang, Bin & Wei, Zhenggui & Li, Huixin, 2006. "Role of straw mulching in non-continuously flooded rice cultivation," Agricultural Water Management, Elsevier, vol. 83(3), pages 252-260, June.
    13. de Silva, C. Shanthi & Rushton, K.R., 2008. "Representation of rainfed valley ricefields using a soil-water balance model," Agricultural Water Management, Elsevier, vol. 95(3), pages 271-282, March.
    14. Kijne, J. W., 2003. "Water productivity under saline conditions," IWMI Books, Reports H032637, International Water Management Institute.
    15. Hossain, Istiaque & Alam, Md. Mahmudul & Siwar, Chamhuri & Bin Mokhtar, Mazlin, 2019. "Measurement of Water Productivity in Seasonal Floodplain Beel Area," SocArXiv q3ayc, Center for Open Science.
    16. Belder, P. & Bouman, B. A. M. & Cabangon, R. & Guoan, Lu & Quilang, E. J. P. & Yuanhua, Li & Spiertz, J. H. J. & Tuong, T. P., 2004. "Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia," Agricultural Water Management, Elsevier, vol. 65(3), pages 193-210, March.
    17. Bouman, B. A. M. & Tuong, T. P., 2001. "Field water management to save water and increase its productivity in irrigated lowland rice," Agricultural Water Management, Elsevier, vol. 49(1), pages 11-30, July.
    18. Wichelns, Dennis, 2002. "An economic perspective on the potential gains from improvements in irrigation water management," Agricultural Water Management, Elsevier, vol. 52(3), pages 233-248, January.
    19. Belder, P. & Bouman, B. A.M. & Spiertz, J.H.J., 2007. "Exploring options for water savings in lowland rice using a modelling approach," Agricultural Systems, Elsevier, vol. 92(1-3), pages 91-114, January.
    20. Tabbal, D. F. & Bouman, B. A. M. & Bhuiyan, S. I. & Sibayan, E. B. & Sattar, M. A., 2002. "On-farm strategies for reducing water input in irrigated rice; case studies in the Philippines," Agricultural Water Management, Elsevier, vol. 56(2), pages 93-112, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:1:y:1999:i:3:p:297-313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.