IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i9p5064-d547378.html
   My bibliography  Save this article

Agroecology for Food and Water Security in Times of Climate Consciousness: A Bibliometric Analysis of Peer-Reviewed Literature Published from 1990 to 2020

Author

Listed:
  • Tavseef Mairaj Shah

    (Rural Revival and Restoration Engineering (RUVIVAL), Institute of Wastewater Management and Water Protection, Hamburg University of Technology, Eissendorfer Strasse 42, 21073 Hamburg, Germany)

  • Sumbal Tasawwar

    (Rural Revival and Restoration Engineering (RUVIVAL), Institute of Wastewater Management and Water Protection, Hamburg University of Technology, Eissendorfer Strasse 42, 21073 Hamburg, Germany)

  • Ralf Otterpohl

    (Rural Revival and Restoration Engineering (RUVIVAL), Institute of Wastewater Management and Water Protection, Hamburg University of Technology, Eissendorfer Strasse 42, 21073 Hamburg, Germany)

Abstract

The discrepancies in our food systems have become more pronounced in the last couple of years due to natural disasters of huge magnitude and the current pandemic, that have served to make them visible to a wider range of population. As a result, a shift to agroecological food and farming systems is currently being advocated at different levels. An agroecological approach to food systems involves consideration of all their interactions with the major challenges of our time—food security, water scarcity, climate change, socioeconomic disparity. This paper presents a bibliometric study of peer reviewed literature about the role of agroecology in relation to either or all of these challenges, published between 1990 and 2020. 1990 was the year in which IPCC published its first assessment report that set into motion many framework agreements and protocols regarding climate change. In 2019 and 2020, IPBES and iPES-Food released separate reports advocating an urgent agricultural transition based on agroecological methodologies. There has been an exponential increase in the published research in this field in this time period, whereas an overwhelming majority of the publications were filed under the subject areas of agricultural and biological sciences, environmental sciences, and social sciences. In addition to the increasing acceptance of the role of agroecology to address the challenges of our times, the results of this analysis point to the cross-cutting nature of issues agroecology caters to.

Suggested Citation

  • Tavseef Mairaj Shah & Sumbal Tasawwar & Ralf Otterpohl, 2021. "Agroecology for Food and Water Security in Times of Climate Consciousness: A Bibliometric Analysis of Peer-Reviewed Literature Published from 1990 to 2020," Sustainability, MDPI, vol. 13(9), pages 1-10, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:5064-:d:547378
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/9/5064/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/9/5064/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Serge Savary & Sonia Akter & Conny Almekinders & Jody Harris & Lise Korsten & Reimund Rötter & Stephen Waddington & Derrill Watson, 2020. "Mapping disruption and resilience mechanisms in food systems," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(4), pages 695-717, August.
    2. Noltze, Martin & Schwarze, Stefan & Qaim, Matin, 2012. "Understanding the adoption of system technologies in smallholder agriculture: The system of rice intensification (SRI) in Timor Leste," Agricultural Systems, Elsevier, vol. 108(C), pages 64-73.
    3. United Nations, 2016. "The Sustainable Development Goals 2016," Working Papers id:11456, eSocialSciences.
    4. Norman Uphoff, 1999. "Agroecological Implications of the System of Rice Intensification (SRI) in Madagascar," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 1(3), pages 297-313, September.
    5. Jody Harris & Lutz Depenbusch & Arshad Ahmad Pal & Ramakrishnan Madhavan Nair & Srinivasan Ramasamy, 2020. "Food system disruption: initial livelihood and dietary effects of COVID-19 on vegetable producers in India," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(4), pages 841-851, August.
    6. Gathorne-Hardy, Alfred & Reddy, D. Narasimha & Venkatanarayana, M. & Harriss-White, Barbara, 2016. "System of Rice Intensification provides environmental and economic gains but at the expense of social sustainability — A multidisciplinary analysis in India," Agricultural Systems, Elsevier, vol. 143(C), pages 159-168.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Berkhout, Ezra & Glover, Dominic & Kuyvenhoven, Arie, 2015. "On-farm impact of the System of Rice Intensification (SRI): Evidence and knowledge gaps," Agricultural Systems, Elsevier, vol. 132(C), pages 157-166.
    2. Bekhzod EGAMBERDIEV, 2021. "Household Impact Of The Covid-19 Pandemic From A Development Economics Perspective - A Review," Regional Science Inquiry, Hellenic Association of Regional Scientists, vol. 0(1), pages 15-30, June.
    3. Martin Paul Jr. Tabe‐Ojong & Bisrat Haile Gebrekidan & Emmanuel Nshakira‐Rukundo & Jan Börner & Thomas Heckelei, 2022. "COVID‐19 in rural Africa: Food access disruptions, food insecurity and coping strategies in Kenya, Namibia, and Tanzania," Agricultural Economics, International Association of Agricultural Economists, vol. 53(5), pages 719-738, September.
    4. Yuko Nakano & Yuki Tanaka & Keijiro Otsuka, 2018. "Impact of training on the intensification of rice farming: evidence from rainfed areas in Tanzania," Agricultural Economics, International Association of Agricultural Economists, vol. 49(2), pages 193-202, March.
    5. Egamberdiev, Bekhzod, 2021. "Household Impact of COVID-19 Pandemic in Development: Economic Perspective-A Review," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 0(1), pages 15-30.
    6. Shingo Yoshida & Hironori Yagi, 2021. "Long-Term Development of Urban Agriculture: Resilience and Sustainability of Farmers Facing the Covid-19 Pandemic in Japan," Sustainability, MDPI, vol. 13(8), pages 1-23, April.
    7. Husain, Zakir & Ghosh, Saswata & Dutta, Mousumi, 2022. "Changes in dietary practices of mother and child during the COVID-19 lockdown: Results from a household survey in Bihar, India," Food Policy, Elsevier, vol. 112(C).
    8. Ecker, Olivier & Hatzenbuehler, Patrick L. & Mahrt, Kristi, 2018. "Transforming agriculture for improving food and nutrition security among Nigerian farm households," NSSP working papers 56, International Food Policy Research Institute (IFPRI).
    9. Giulio Marcucci & Filippo Emanuele Ciarapica & Giovanni Mazzuto & Maurizio Bevilacqua, 2024. "Analysis of ripple effect and its impact on supply chain resilience: a general framework and a case study on agri-food supply chain during the COVID-19 pandemic," Operations Management Research, Springer, vol. 17(1), pages 175-200, March.
    10. Boglárka Anna Éliás & Attila Jámbor, 2021. "Food Security and COVID-19: A Systematic Review of the First-Year Experience," Sustainability, MDPI, vol. 13(9), pages 1-18, May.
    11. Thomas Pircher & Conny J. M. Almekinders, 2021. "Making sense of farmers’ demand for seed of root, tuber and banana crops: a systematic review of methods," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(5), pages 1285-1301, October.
    12. Claudia Hanson & Sanni Kujala & Peter Waiswa & Tanya Marchant & Joanna Schellenberg, 2017. "Community-based approaches for neonatal survival: Meta-analyses of randomized trial data," WIDER Working Paper Series wp-2017-137, World Institute for Development Economic Research (UNU-WIDER).
    13. Eugenia Ganea & Valentina Bodrug-Lungu, 2018. "Addressing Inequality in Vocational/ Technical Education by Eliminating Gender Bias," Revista romaneasca pentru educatie multidimensionala - Journal for Multidimensional Education, Editura Lumen, Department of Economics, vol. 10(4), pages 136-155, December.
    14. Gallopín, Gilberto, 2018. "Back to the future," Energy Policy, Elsevier, vol. 123(C), pages 318-324.
    15. Kalle Hirvonen & Bart Minten & Belay Mohammed & Seneshaw Tamru, 2021. "Food prices and marketing margins during the COVID‐19 pandemic: Evidence from vegetable value chains in Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 52(3), pages 407-421, May.
    16. Pandey, Shanta, 2017. "Persistent nature of child marriage among women even when it is illegal: The case of Nepal," Children and Youth Services Review, Elsevier, vol. 73(C), pages 242-247.
    17. OGUNNOWO, Fatai Abiodun & Prof. F. A. OKWO & JULIUS, Deborah Nwanne, 2023. "Availability and Utilization of Security Facilities in Federal Tertiary Institutions of Enugu State, Nigeria," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 7(5), pages 931-941, May.
    18. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    19. Victor Kasulo & Rochelle Holm & Mavuto Tembo & Wales Singini & Joshua Mchenga, 2020. "Enhancing sustainable sanitation through capacity building and rural sanitation marketing in Malawi," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(1), pages 201-215, January.
    20. Fernanda Guedes & Alexandre Szklo & Pedro Rochedo & Frédéric Lantz & Leticia Magalar & Eveline Maria Vásquez Arroyo, 2018. "Climate-Energy-Water Nexus in Brazilian Oil Refineries," Working Papers hal-03188594, HAL.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:5064-:d:547378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.