IDEAS home Printed from https://ideas.repec.org/a/spr/elcore/v25y2025i3d10.1007_s10660-023-09725-1.html
   My bibliography  Save this article

Rating and perceived helpfulness in a bipartite network of online product reviews

Author

Listed:
  • Pedro Campos

    (University of Porto
    INESC TEC Campus da FEUP)

  • Eva Pinto

    (University of Porto)

  • Ana Torres

    (University of Aveiro Campus de Santiago
    INESC TEC Campus da FEUP)

Abstract

In many e-commerce platforms user communities share product information in the form of reviews and ratings to help other consumers to make their choices. This study develops a new theoretical framework generating a bipartite network of products sold by Amazon.com in the category “musical instruments”, by linking products through the reviews. We analyze product rating and perceived helpfulness of online customer reviews and the relationship between the centrality of reviews, product rating and the helpfulness of reviews using Clustering, regression trees, and random forests algorithms to, respectively, classify and find patterns in 2214 reviews. Results demonstrate: (1) that a high number of reviews do not imply a high product rating; (2) when reviews are helpful for consumer decision-making we observe an increase on the number of reviews; (3) a clear positive relationship between product rating and helpfulness of the reviews; and (4) a weak relationship between the centrality measures (betweenness and eigenvector) giving the importance of the product in the network, and the quality measures (product rating and helpfulness of reviews) regarding musical instruments. These results suggest that products may be central to the network, although with low ratings and with reviews providing little helpfulness to consumers. The findings in this study provide several important contributions for e-commerce businesses’ improvement of the review service management to support customers’ experiences and online customers’ decision-making.

Suggested Citation

  • Pedro Campos & Eva Pinto & Ana Torres, 2025. "Rating and perceived helpfulness in a bipartite network of online product reviews," Electronic Commerce Research, Springer, vol. 25(3), pages 1607-1639, June.
  • Handle: RePEc:spr:elcore:v:25:y:2025:i:3:d:10.1007_s10660-023-09725-1
    DOI: 10.1007/s10660-023-09725-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10660-023-09725-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10660-023-09725-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhenhui Jiang & Izak Benbasat, 2007. "Research Note---Investigating the Influence of the Functional Mechanisms of Online Product Presentations," Information Systems Research, INFORMS, vol. 18(4), pages 454-470, December.
    2. Daniel Fleder & Kartik Hosanagar, 2009. "Blockbuster Culture's Next Rise or Fall: The Impact of Recommender Systems on Sales Diversity," Management Science, INFORMS, vol. 55(5), pages 697-712, May.
    3. David Godes & Dina Mayzlin, 2009. "Firm-Created Word-of-Mouth Communication: Evidence from a Field Test," Marketing Science, INFORMS, vol. 28(4), pages 721-739, 07-08.
    4. Chen, Jie & Teng, Lefa & Yu, Ying & Yu, Xueer, 2016. "The effect of online information sources on purchase intentions between consumers with high and low susceptibility to informational influence," Journal of Business Research, Elsevier, vol. 69(2), pages 467-475.
    5. Chris Forman & Anindya Ghose & Batia Wiesenfeld, 2008. "Examining the Relationship Between Reviews and Sales: The Role of Reviewer Identity Disclosure in Electronic Markets," Information Systems Research, INFORMS, vol. 19(3), pages 291-313, September.
    6. Christophe Van den Bulte & Stefan Stremersch, 2004. "Social Contagion and Income Heterogeneity in New Product Diffusion: A Meta-Analytic Test," Marketing Science, INFORMS, vol. 23(4), pages 530-544, July.
    7. Salminen, Joni & Kandpal, Chandrashekhar & Kamel, Ahmed Mohamed & Jung, Soon-gyo & Jansen, Bernard J., 2022. "Creating and detecting fake reviews of online products," Journal of Retailing and Consumer Services, Elsevier, vol. 64(C).
    8. Filieri, Raffaele, 2016. "What makes an online consumer review trustworthy?," Annals of Tourism Research, Elsevier, vol. 58(C), pages 46-64.
    9. Brett Hollenbeck & Sridhar Moorthy & Davide Proserpio, 2019. "Advertising Strategy in the Presence of Reviews: An Empirical Analysis," Marketing Science, INFORMS, vol. 38(5), pages 793-811, September.
    10. Andrea Landherr & Bettina Friedl & Julia Heidemann, 2010. "A Critical Review of Centrality Measures in Social Networks," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 2(6), pages 371-385, December.
    11. Muller, Eitan & Peres, Renana, 2019. "The effect of social networks structure on innovation performance: A review and directions for research," International Journal of Research in Marketing, Elsevier, vol. 36(1), pages 3-19.
    12. David Godes & Dina Mayzlin, 2004. "Using Online Conversations to Study Word-of-Mouth Communication," Marketing Science, INFORMS, vol. 23(4), pages 545-560, June.
    13. Hui-Ju Wang, 2022. "Understanding reviewer characteristics in online reviews via network structural positions," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(3), pages 1311-1325, September.
    14. Chakravarty, Anindita & Liu, Yong & Mazumdar, Tridib, 2010. "The Differential Effects of Online Word-of-Mouth and Critics' Reviews on Pre-release Movie Evaluation," Journal of Interactive Marketing, Elsevier, vol. 24(3), pages 185-197.
    15. Yani Wang & Jun Wang & Tang Yao, 2019. "What makes a helpful online review? A meta-analysis of review characteristics," Electronic Commerce Research, Springer, vol. 19(2), pages 257-284, June.
    16. Kim, Henry M. & Ghiasi, Bita & Spear, Max & Laskowski, Marek & Li, Jiye, 2017. "Online serendipity: The case for curated recommender systems," Business Horizons, Elsevier, vol. 60(5), pages 613-620.
    17. Paul A. Pavlou & David Gefen, 2004. "Building Effective Online Marketplaces with Institution-Based Trust," Information Systems Research, INFORMS, vol. 15(1), pages 37-59, March.
    18. Chong (Alex) Wang & Xiaoquan (Michael) Zhang & Il-Horn Hann, 2018. "Socially Nudged: A Quasi-Experimental Study of Friends’ Social Influence in Online Product Ratings," Information Systems Research, INFORMS, vol. 29(3), pages 641-655, September.
    19. Park, Sangwon & Nicolau, Juan L., 2015. "Asymmetric effects of online consumer reviews," Annals of Tourism Research, Elsevier, vol. 50(C), pages 67-83.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng Zhao & Chong Alex Wang, 2023. "A cross-site comparison of online review manipulation using Benford’s law," Electronic Commerce Research, Springer, vol. 23(1), pages 365-406, March.
    2. Florian Probst & Laura Grosswiele & Regina Pfleger, 2013. "Who will lead and who will follow: Identifying Influential Users in Online Social Networks," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 5(3), pages 179-193, June.
    3. Christoph Schneider & Markus Weinmann & Peter N.C. Mohr & Jan vom Brocke, 2021. "When the Stars Shine Too Bright: The Influence of Multidimensional Ratings on Online Consumer Ratings," Management Science, INFORMS, vol. 67(6), pages 3871-3898, June.
    4. Raffaele Filieri & Elisabetta Raguseo & Claudio Vitari, 2018. "When are extreme ratings more helpful? Empirical evidence on the moderating effects of review characteristics and product type," Post-Print halshs-01923243, HAL.
    5. Miyea Kim & Jeongsoo Han & Mina Jun, 2020. "Do same-level review ratings have the same level of review helpfulness? The role of information diagnosticity in online reviews," Information Technology & Tourism, Springer, vol. 22(4), pages 563-591, December.
    6. Zheng, Lili, 2021. "The classification of online consumer reviews: A systematic literature review and integrative framework," Journal of Business Research, Elsevier, vol. 135(C), pages 226-251.
    7. Kick, Markus, 2015. "Social Media Research: A Narrative Review," EconStor Preprints 182506, ZBW - Leibniz Information Centre for Economics.
    8. Román, Sergio & Riquelme, Isabel P. & Iacobucci, Dawn, 2024. "Antecedents and consequences of perceived helpfulness of extremely positive and exaggerated reviews," Journal of Retailing and Consumer Services, Elsevier, vol. 80(C).
    9. Raffaele Filieri & Elisabetta Raguseo & Claudio Vitari, 2018. "When are extreme ratings more helpful? Empirical evidence on the moderating effects of review characteristics and product type," Grenoble Ecole de Management (Post-Print) halshs-01923243, HAL.
    10. Diwanji, Vaibhav S. & Cortese, Juliann, 2020. "Contrasting user generated videos versus brand generated videos in ecommerce," Journal of Retailing and Consumer Services, Elsevier, vol. 54(C).
    11. Yucheng Zhang & Zhiling Wang & Lin Xiao & Lijun Wang & Pei Huang, 2023. "Discovering the evolution of online reviews: A bibliometric review," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-22, December.
    12. Khim-Yong Goh & Cheng-Suang Heng & Zhijie Lin, 2013. "Social Media Brand Community and Consumer Behavior: Quantifying the Relative Impact of User- and Marketer-Generated Content," Information Systems Research, INFORMS, vol. 24(1), pages 88-107, March.
    13. Bhukya, Ramulu & Paul, Justin, 2023. "Social influence research in consumer behavior: What we learned and what we need to learn? – A hybrid systematic literature review," Journal of Business Research, Elsevier, vol. 162(C).
    14. Tianshu Sun & Sean J. Taylor, 2020. "Displaying things in common to encourage friendship formation: A large randomized field experiment," Quantitative Marketing and Economics (QME), Springer, vol. 18(3), pages 237-271, September.
    15. Moradi, Masoud & Dass, Mayukh & Kumar, Piyush, 2023. "Differential effects of analytical versus emotional rhetorical style on review helpfulness," Journal of Business Research, Elsevier, vol. 154(C).
    16. Angela Aerry Choi & Daegon Cho & Dobin Yim & Jae Yun Moon & Wonseok Oh, 2019. "When Seeing Helps Believing: The Interactive Effects of Previews and Reviews on E-Book Purchases," Information Systems Research, INFORMS, vol. 30(4), pages 1164-1183, December.
    17. Guo, Yue & Barnes, Stuart J. & Jia, Qiong, 2017. "Mining meaning from online ratings and reviews: Tourist satisfaction analysis using latent dirichlet allocation," Tourism Management, Elsevier, vol. 59(C), pages 467-483.
    18. Yufei Zhang & Clay M. Voorhees & G. Tomas M. Hult, 2024. "Dynamic interplays between online reviews and marketing promotions," Journal of the Academy of Marketing Science, Springer, vol. 52(6), pages 1820-1841, November.
    19. Yani Wang & Jun Wang & Tang Yao, 2019. "What makes a helpful online review? A meta-analysis of review characteristics," Electronic Commerce Research, Springer, vol. 19(2), pages 257-284, June.
    20. Pei-Yu Chen & Yili Hong & Ying Liu, 2018. "The Value of Multidimensional Rating Systems: Evidence from a Natural Experiment and Randomized Experiments," Management Science, INFORMS, vol. 64(10), pages 4629-4647, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:elcore:v:25:y:2025:i:3:d:10.1007_s10660-023-09725-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.