IDEAS home Printed from https://ideas.repec.org/a/spr/elcore/v23y2023i4d10.1007_s10660-022-09543-x.html
   My bibliography  Save this article

Novel next-group recommendation approach based on sequential market basket information

Author

Listed:
  • Li-Ching Ma

    (National United University)

Abstract

A market basket is a set of items included in a retail assortment that a customer buys on a shopping trip. The purpose of market basket analysis is to persuade a customer to spend more money through upselling or cross-selling. Most recommendation systems only suggest a single next-item or the top n items that a customer is most likely to buy. A company might succeed in convincing a customer to spend more money to increase sales revenue if a recommendation system can suggest the next or top n groups of items that customers are likely to buy according to the items in their basket. Based on the similarity upper approximation clustering, Borda majority count and PrefixSpan algorithm, this paper proposes a novel next-group recommendation approach according to sequential market basket information. Compared with the previous methods, the proposed approach can provide next-group instead of next-item recommendation, which may create more opportunities for customers to increase their spending.

Suggested Citation

  • Li-Ching Ma, 2023. "Novel next-group recommendation approach based on sequential market basket information," Electronic Commerce Research, Springer, vol. 23(4), pages 2399-2418, December.
  • Handle: RePEc:spr:elcore:v:23:y:2023:i:4:d:10.1007_s10660-022-09543-x
    DOI: 10.1007/s10660-022-09543-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10660-022-09543-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10660-022-09543-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boztug, Yasemin & Reutterer, Thomas, 2008. "A combined approach for segment-specific market basket analysis," European Journal of Operational Research, Elsevier, vol. 187(1), pages 294-312, May.
    2. Li-Ching Ma, 2018. "Discovering Consensus Preferences Visually Based on Gower Plots," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(03), pages 741-761, May.
    3. Nan Jing & Tao Jiang & Juan Du & Vijayan Sugumaran, 2018. "Personalized recommendation based on customer preference mining and sentiment assessment from a Chinese e-commerce website," Electronic Commerce Research, Springer, vol. 18(1), pages 159-179, March.
    4. Pradeep Kumar & Bapi S. Raju & P. Radha Krishna, 2010. "A New Similarity Metric for Sequential Data," International Journal of Data Warehousing and Mining (IJDWM), IGI Global, vol. 6(4), pages 16-32, October.
    5. Chen, Yen-Liang & Cheng, Li-Chen, 2009. "Mining maximum consensus sequences from group ranking data," European Journal of Operational Research, Elsevier, vol. 198(1), pages 241-251, October.
    6. Ma, Li-Ching, 2016. "A new group ranking approach for ordinal preferences based on group maximum consensus sequences," European Journal of Operational Research, Elsevier, vol. 251(1), pages 171-181.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li-Ching Ma, 2018. "Discovering Consensus Preferences Visually Based on Gower Plots," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(03), pages 741-761, May.
    2. Fan Zou & Yupeng Li & Jiahuan Huang, 2022. "Group interaction and evolution of customer reviews based on opinion dynamics towards product redesign," Electronic Commerce Research, Springer, vol. 22(4), pages 1131-1151, December.
    3. Gong, Zaiwu & Guo, Weiwei & Słowiński, Roman, 2021. "Transaction and interaction behavior-based consensus model and its application to optimal carbon emission reduction," Omega, Elsevier, vol. 104(C).
    4. Weiwei Deng & Jian Ma, 2022. "A knowledge graph approach for recommending patents to companies," Electronic Commerce Research, Springer, vol. 22(4), pages 1435-1466, December.
    5. Wei-Feng Tung & Yu-Jei Lan, 2017. "Analyzing social choice and group ranking of online games for product mix innovation," Information Systems Frontiers, Springer, vol. 19(6), pages 1301-1309, December.
    6. Harald Hruschka, 2021. "Comparing unsupervised probabilistic machine learning methods for market basket analysis," Review of Managerial Science, Springer, vol. 15(2), pages 497-527, February.
    7. Harald Hruschka, 2022. "Analyzing joint brand purchases by conditional restricted Boltzmann machines," Review of Managerial Science, Springer, vol. 16(4), pages 1117-1145, May.
    8. Min Xue & Chao Fu & Shan-Lin Yang, 2021. "Dynamic Expert Reliability Based Feedback Mechanism in Consensus Reaching Process with Distributed Preference Relations," Group Decision and Negotiation, Springer, vol. 30(2), pages 341-375, April.
    9. Mozhu Wang & Jianming Yao, 2023. "A reliable location design of unmanned vending machines based on customer satisfaction," Electronic Commerce Research, Springer, vol. 23(1), pages 541-575, March.
    10. Cheng, Li-Chen & Chen, Yen-Liang & Chiang, Yu-Chia, 2016. "Identifying conflict patterns to reach a consensus – A novel group decision approach," European Journal of Operational Research, Elsevier, vol. 254(2), pages 622-631.
    11. Wu, Xingli & Liao, Huchang, 2019. "A consensus-based probabilistic linguistic gained and lost dominance score method," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1017-1027.
    12. Hruschka, Harald, 2014. "Linking Multi-Category Purchases to Latent Activities of Shoppers: Analysing Market Baskets by Topic Models," University of Regensburg Working Papers in Business, Economics and Management Information Systems 482, University of Regensburg, Department of Economics.
    13. Sarah Bayer & Henner Gimpel & Daniel Rau, 2021. "IoT-commerce - opportunities for customers through an affordance lens," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(1), pages 27-50, March.
    14. Katrin Dippold & Harald Hruschka, 2013. "Variable selection for market basket analysis," Computational Statistics, Springer, vol. 28(2), pages 519-539, April.
    15. Dippold Katrin & Hruschka Harald, 2013. "A Model of Heterogeneous Multicategory Choice for Market Basket Analysis," Review of Marketing Science, De Gruyter, vol. 11(1), pages 1-31, September.
    16. Lifeng He & Dongmei Han & Xiaohang Zhou & Zheng Qu, 2020. "The Voice of Drug Consumers: Online Textual Review Analysis Using Structural Topic Model," IJERPH, MDPI, vol. 17(10), pages 1-18, May.
    17. Michael Hahsler & Radoslaw Karpienko, 2017. "Visualizing association rules in hierarchical groups," Journal of Business Economics, Springer, vol. 87(3), pages 317-335, April.
    18. Weiwei Deng, 2022. "Leveraging consumer behaviors for product recommendation: an approach based on heterogeneous network," Electronic Commerce Research, Springer, vol. 22(4), pages 1079-1105, December.
    19. Gökgür, Burak & Karabatı, Selçuk, 2019. "Dynamic and targeted bundle pricing of two independently valued products," European Journal of Operational Research, Elsevier, vol. 279(1), pages 184-198.
    20. Bagirov, Adil M. & Ugon, Julien & Mirzayeva, Hijran, 2013. "Nonsmooth nonconvex optimization approach to clusterwise linear regression problems," European Journal of Operational Research, Elsevier, vol. 229(1), pages 132-142.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:elcore:v:23:y:2023:i:4:d:10.1007_s10660-022-09543-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.