IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v88y2024i1d10.1007_s10589-024-00555-x.html
   My bibliography  Save this article

Convex approximations of two-stage risk-averse mixed-integer recourse models

Author

Listed:
  • E. Ruben Beesten

    (University of Groningen)

  • Ward Romeijnders

    (University of Groningen)

  • Kees Jan Roodbergen

    (University of Groningen)

Abstract

We consider two-stage risk-averse mixed-integer recourse models with law invariant coherent risk measures. As in the risk-neutral case, these models are generally non-convex as a result of the integer restrictions on the second-stage decision variables and hence, hard to solve. To overcome this issue, we propose a convex approximation approach. We derive a performance guarantee for this approximation in the form of an asymptotic error bound, which depends on the choice of risk measure. This error bound, which extends an existing error bound for the conditional value at risk, shows that our approximation method works particularly well if the distribution of the random parameters in the model is highly dispersed. For special cases we derive tighter, non-asymptotic error bounds. Whereas our error bounds are valid only for a continuously distributed second-stage right-hand side vector, practical optimization methods often require discrete distributions. In this context, we show that our error bounds provide statistical error bounds for the corresponding (discretized) sample average approximation (SAA) model. In addition, we construct a Benders’ decomposition algorithm that uses our convex approximations in an SAA-framework and we provide a performance guarantee for the resulting algorithm solution. Finally, we perform numerical experiments which show that for certain risk measures our approach works even better than our theoretical performance guarantees suggest.

Suggested Citation

  • E. Ruben Beesten & Ward Romeijnders & Kees Jan Roodbergen, 2024. "Convex approximations of two-stage risk-averse mixed-integer recourse models," Computational Optimization and Applications, Springer, vol. 88(1), pages 313-347, May.
  • Handle: RePEc:spr:coopap:v:88:y:2024:i:1:d:10.1007_s10589-024-00555-x
    DOI: 10.1007/s10589-024-00555-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-024-00555-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-024-00555-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexander Shapiro, 2013. "On Kusuoka Representation of Law Invariant Risk Measures," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 142-152, February.
    2. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    3. Maarten Vlerk, 2010. "Convex approximations for a class of mixed-integer recourse models," Annals of Operations Research, Springer, vol. 177(1), pages 139-150, June.
    4. Ward Romeijnders & David P. Morton & Maarten H. van der Vlerk, 2017. "Assessing the Quality of Convex Approximations for Two-Stage Totally Unimodular Integer Recourse Models," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 211-231, May.
    5. Niels Laan & Ward Romeijnders & Maarten H. Vlerk, 2018. "Higher-order total variation bounds for expectations of periodic functions and simple integer recourse approximations," Computational Management Science, Springer, vol. 15(3), pages 325-349, October.
    6. Matthias Nowak & Werner Römisch, 2000. "Stochastic Lagrangian Relaxation Applied to Power Scheduling in a Hydro-Thermal System under Uncertainty," Annals of Operations Research, Springer, vol. 100(1), pages 251-272, December.
    7. Russo, Ralph P. & Shyamalkumar, Nariankadu D., 2010. "Bounds for the bias of the empirical CTE," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 352-357, December.
    8. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    9. Alem, Douglas & Clark, Alistair & Moreno, Alfredo, 2016. "Stochastic network models for logistics planning in disaster relief," European Journal of Operational Research, Elsevier, vol. 255(1), pages 187-206.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. Tyrrell Rockafellar & Johannes O. Royset, 2018. "Superquantile/CVaR risk measures: second-order theory," Annals of Operations Research, Springer, vol. 262(1), pages 3-28, March.
    2. Georg Ch. Pflug & Alois Pichler, 2016. "Time-Consistent Decisions and Temporal Decomposition of Coherent Risk Functionals," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 682-699, May.
    3. Sungchul Hong & Jong-June Jeon, 2023. "Uniform Pessimistic Risk and its Optimal Portfolio," Papers 2303.07158, arXiv.org, revised May 2024.
    4. James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
    5. Viet Anh Nguyen & Soroosh Shafiee & Damir Filipovi'c & Daniel Kuhn, 2021. "Mean-Covariance Robust Risk Measurement," Papers 2112.09959, arXiv.org, revised Nov 2023.
    6. Amarante, Massimiliano & Ghossoub, Mario, 2021. "Aggregation of opinions and risk measures," Journal of Economic Theory, Elsevier, vol. 196(C).
    7. Sofiane Aboura, 2014. "When the U.S. Stock Market Becomes Extreme?," Risks, MDPI, vol. 2(2), pages 1-15, May.
    8. Dimitrios G. Konstantinides & Georgios C. Zachos, 2019. "Exhibiting Abnormal Returns Under a Risk Averse Strategy," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 551-566, June.
    9. Brian Tomlin & Yimin Wang, 2005. "On the Value of Mix Flexibility and Dual Sourcing in Unreliable Newsvendor Networks," Manufacturing & Service Operations Management, INFORMS, vol. 7(1), pages 37-57, June.
    10. Cotter, John & Dowd, Kevin, 2007. "Exponential Spectral Risk Measures," MPRA Paper 3499, University Library of Munich, Germany.
    11. Wentao Hu & Cuixia Chen & Yufeng Shi & Ze Chen, 2022. "A Tail Measure With Variable Risk Tolerance: Application in Dynamic Portfolio Insurance Strategy," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 831-874, June.
    12. Cotter, John & Dowd, Kevin, 2006. "Extreme spectral risk measures: An application to futures clearinghouse margin requirements," Journal of Banking & Finance, Elsevier, vol. 30(12), pages 3469-3485, December.
    13. Wyn Morgan & John Cotter & Kevin Dowd, 2012. "Extreme Measures of Agricultural Financial Risk," Journal of Agricultural Economics, Wiley Blackwell, vol. 63(1), pages 65-82, February.
    14. Ken Kobayashi & Yuichi Takano & Kazuhide Nakata, 2021. "Bilevel cutting-plane algorithm for cardinality-constrained mean-CVaR portfolio optimization," Journal of Global Optimization, Springer, vol. 81(2), pages 493-528, October.
    15. Francesco Cesarone & Andrea Scozzari & Fabio Tardella, 2015. "Linear vs. quadratic portfolio selection models with hard real-world constraints," Computational Management Science, Springer, vol. 12(3), pages 345-370, July.
    16. Leitner Johannes, 2007. "Pricing and hedging with globally and instantaneously vanishing risk," Statistics & Risk Modeling, De Gruyter, vol. 25(4), pages 311-332, October.
    17. Charles-Olivier Amédée-Manesme & Fabrice Barthélémy, 2022. "Proper use of the modified Sharpe ratios in performance measurement: rearranging the Cornish Fisher expansion," Annals of Operations Research, Springer, vol. 313(2), pages 691-712, June.
    18. Pichler, Alois & Shapiro, Alexander, 2015. "Minimal representation of insurance prices," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 184-193.
    19. Omid Momen & Akbar Esfahanipour & Abbas Seifi, 2020. "A robust behavioral portfolio selection: model with investor attitudes and biases," Operational Research, Springer, vol. 20(1), pages 427-446, March.
    20. Ibragimov, Rustam & Walden, Johan, 2007. "The limits of diversification when losses may be large," Scholarly Articles 2624460, Harvard University Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:88:y:2024:i:1:d:10.1007_s10589-024-00555-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.