Accelerated failure time models for recurrent event data analysis and joint modeling
Author
Abstract
Suggested Citation
DOI: 10.1007/s00180-021-01171-7
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Gongjun Xu & Sy Han Chiou & Chiung-Yu Huang & Mei-Cheng Wang & Jun Yan, 2017. "Joint Scale-Change Models for Recurrent Events and Failure Time," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 794-805, April.
- Fushing Hsieh & Yi-Kuan Tseng & Jane-Ling Wang, 2006. "Joint Modeling of Survival and Longitudinal Data: Likelihood Approach Revisited," Biometrics, The International Biometric Society, vol. 62(4), pages 1037-1043, December.
- Robert M. Elashoff & Gang Li & Ning Li, 2008. "A Joint Model for Longitudinal Measurements and Survival Data in the Presence of Multiple Failure Types," Biometrics, The International Biometric Society, vol. 64(3), pages 762-771, September.
- Qing Cai & Mei‐Cheng Wang & Kwun Chuen Gary Chan, 2017. "Joint modeling of longitudinal, recurrent events and failure time data for survivor's population," Biometrics, The International Biometric Society, vol. 73(4), pages 1150-1160, December.
- Guo X. & Carlin B.P., 2004. "Separate and Joint Modeling of Longitudinal and Event Time Data Using Standard Computer Packages," The American Statistician, American Statistical Association, vol. 58, pages 16-24, February.
- Yijian Huang & Limin Peng, 2009. "Accelerated Recurrence Time Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 636-648, December.
- Yueh-Yun Chi & Joseph G. Ibrahim, 2006. "Joint Models for Multivariate Longitudinal and Multivariate Survival Data," Biometrics, The International Biometric Society, vol. 62(2), pages 432-445, June.
- Yi-Kuan Tseng & Fushing Hsieh & Jane-Ling Wang, 2005. "Joint modelling of accelerated failure time and longitudinal data," Biometrika, Biometrika Trust, vol. 92(3), pages 587-603, September.
- Chen, Ming-Hui & Ibrahim, Joseph G. & Sinha, Debajyoti, 2004. "A new joint model for longitudinal and survival data with a cure fraction," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 18-34, October.
- Dimitris Rizopoulos & Laura A. Hatfield & Bradley P. Carlin & Johanna J. M. Takkenberg, 2014. "Combining Dynamic Predictions From Joint Models for Longitudinal and Time-to-Event Data Using Bayesian Model Averaging," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1385-1397, December.
- L. Wu & W. Liu & X. J. Hu, 2010. "Joint Inference on HIV Viral Dynamics and Immune Suppression in Presence of Measurement Errors," Biometrics, The International Biometric Society, vol. 66(2), pages 327-335, June.
- Rizopoulos, Dimitris, 2010. "JM: An R Package for the Joint Modelling of Longitudinal and Time-to-Event Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 35(i09).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Adam Braima S. Mastor & Abdulaziz S. Alghamdi & Oscar Ngesa & Joseph Mung’atu & Christophe Chesneau & Ahmed Z. Afify, 2023. "The Extended Exponential-Weibull Accelerated Failure Time Model with Application to Sudan COVID-19 Data," Mathematics, MDPI, vol. 11(2), pages 1-26, January.
- Abdisalam Hassan Muse & Samuel Mwalili & Oscar Ngesa & Christophe Chesneau & Afrah Al-Bossly & Mahmoud El-Morshedy, 2022. "Bayesian and Frequentist Approaches for a Tractable Parametric General Class of Hazard-Based Regression Models: An Application to Oncology Data," Mathematics, MDPI, vol. 10(20), pages 1-41, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lisa M. McCrink & Adele H. Marshall & Karen J. Cairns, 2013. "Advances in Joint Modelling: A Review of Recent Developments with Application to the Survival of End Stage Renal Disease Patients," International Statistical Review, International Statistical Institute, vol. 81(2), pages 249-269, August.
- repec:jss:jstsof:35:i09 is not listed on IDEAS
- Dimitris Rizopoulos, 2011. "Dynamic Predictions and Prospective Accuracy in Joint Models for Longitudinal and Time-to-Event Data," Biometrics, The International Biometric Society, vol. 67(3), pages 819-829, September.
- Yih‐Huei Huang & Wen‐Han Hwang & Fei‐Yin Chen, 2016. "Improving efficiency using the Rao–Blackwell theorem in corrected and conditional score estimation methods for joint models," Biometrics, The International Biometric Society, vol. 72(4), pages 1136-1144, December.
- Rui Martins, 2022. "A flexible link for joint modelling longitudinal and survival data accounting for individual longitudinal heterogeneity," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(1), pages 41-61, March.
- Wei Yang & Dawei Xie & Qiang Pan & Harold I. Feldman & Wensheng Guo, 2017. "Joint Modeling of Repeated Measures and Competing Failure Events in a Study of Chronic Kidney Disease," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 504-524, December.
- Taban Baghfalaki & Mojtaba Ganjali & Geert Verbeke, 2017. "A shared parameter model of longitudinal measurements and survival time with heterogeneous random-effects distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(15), pages 2813-2836, November.
- Rizopoulos, Dimitris, 2012. "Fast fitting of joint models for longitudinal and event time data using a pseudo-adaptive Gaussian quadrature rule," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 491-501.
- Hanze Zhang & Yangxin Huang, 2020. "Quantile regression-based Bayesian joint modeling analysis of longitudinal–survival data, with application to an AIDS cohort study," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 339-368, April.
- Wang, Shikun & Li, Zhao & Lan, Lan & Zhao, Jieyi & Zheng, W. Jim & Li, Liang, 2022. "GPU accelerated estimation of a shared random effect joint model for dynamic prediction," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
- Dilip C. Nath & Atanu Bhattacharjee, 2014. "Joint longitudinal and survival data modelling: an application in anti-diabetes drug therapeutic effect," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 15(3), pages 437-452, June.
- An-Min Tang & Nian-Sheng Tang & Dalei Yu, 2023. "Bayesian semiparametric joint model of multivariate longitudinal and survival data with dependent censoring," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(4), pages 888-918, October.
- Jaeun Choi & Donglin Zeng & Andrew F. Olshan & Jianwen Cai, 2018. "Joint modeling of survival time and longitudinal outcomes with flexible random effects," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 126-152, January.
- Chen, Chyong-Mei & Shen, Pao-sheng & Tseng, Yi-Kuan, 2018. "Semiparametric transformation joint models for longitudinal covariates and interval-censored failure time," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 116-127.
- Walter Dempsey & Peter McCullagh, 2018. "Survival models and health sequences," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(4), pages 550-584, October.
- Zhang, Zili & Charalambous, Christiana & Foster, Peter, 2023. "A Gaussian copula joint model for longitudinal and time-to-event data with random effects," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
- Oi, Katsuya, 2020. "Disuse as time away from a cognitively demanding job; how does it temporally or developmentally impact late-life cognition?," Intelligence, Elsevier, vol. 82(C).
- Rizopoulos, Dimitris, 2016. "The R Package JMbayes for Fitting Joint Models for Longitudinal and Time-to-Event Data Using MCMC," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 72(i07).
- Hongbin Zhang & Lang Wu, 2018. "A non‐linear model for censored and mismeasured time varying covariates in survival models, with applications in human immunodeficiency virus and acquired immune deficiency syndrome studies," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1437-1450, November.
- Hongtu Zhu & Joseph G. Ibrahim & Yueh-Yun Chi & Niansheng Tang, 2012. "Bayesian Influence Measures for Joint Models for Longitudinal and Survival Data," Biometrics, The International Biometric Society, vol. 68(3), pages 954-964, September.
- Philipson, Pete & Hickey, Graeme L. & Crowther, Michael J. & Kolamunnage-Dona, Ruwanthi, 2020. "Faster Monte Carlo estimation of joint models for time-to-event and multivariate longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
More about this item
Keywords
Bayesian inference; Joint modeling; Longitudinal data; Recurrent event; Survival analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:37:y:2022:i:4:d:10.1007_s00180-021-01171-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.