IDEAS home Printed from https://ideas.repec.org/a/bes/amstat/v58y2004mfebruaryp16-24.html
   My bibliography  Save this article

Separate and Joint Modeling of Longitudinal and Event Time Data Using Standard Computer Packages

Author

Listed:
  • Guo X.
  • Carlin B.P.

Abstract

No abstract is available for this item.

Suggested Citation

  • Guo X. & Carlin B.P., 2004. "Separate and Joint Modeling of Longitudinal and Event Time Data Using Standard Computer Packages," The American Statistician, American Statistical Association, vol. 58, pages 16-24, February.
  • Handle: RePEc:bes:amstat:v:58:y:2004:m:february:p:16-24
    as

    Download full text from publisher

    File URL: http://www.ingentaconnect.com/content/asa/tas/2004/00000058/00000001/art00007
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Janet Niekerk & Haakon Bakka & Håvard Rue, 2023. "Stable Non-Linear Generalized Bayesian Joint Models for Survival-Longitudinal Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 102-128, February.
    2. Chin-Tsang Chiang, 2011. "A more flexible joint latent model for longitudinal and survival time data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 73(2), pages 151-170, March.
    3. Feng Gao & J. Miller & Chengjie Xiong & Julia Beiser & Mae Gordon, 2011. "A joint-modeling approach to assess the impact of biomarker variability on the risk of developing clinical outcome," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 20(1), pages 83-100, March.
    4. Dilip C. Nath & Atanu Bhattacharjee, 2014. "Joint longitudinal and survival data modelling: an application in anti-diabetes drug therapeutic effect," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 15(3), pages 437-452, June.
    5. Liu, Yue & Liu, Lei & Zhou, Jianhui, 2015. "Joint latent class model of survival and longitudinal data: An application to CPCRA study," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 40-50.
    6. Ram Thapa & Harold E. Burkhart & Jie Li & Yili Hong, 2016. "Modeling Clustered Survival Times of Loblolly Pine with Time-dependent Covariates and Shared Frailties," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(1), pages 92-110, March.
    7. Schweitzer, Maurice E. & Hershey, John C. & Bradlow, Eric T., 2006. "Promises and lies: Restoring violated trust," Organizational Behavior and Human Decision Processes, Elsevier, vol. 101(1), pages 1-19, September.
    8. Michael J. Crowther & Keith R. Abrams & Paul C. Lambert, 2013. "Joint modeling of longitudinal and survival data," Stata Journal, StataCorp LP, vol. 13(1), pages 165-184, March.
    9. Toshihiro Misumi, 2022. "Joint modeling for longitudinal covariate and binary outcome via h-likelihood," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(5), pages 1225-1243, December.
    10. repec:jss:jstsof:35:i09 is not listed on IDEAS
    11. Rong Fu & Peter B. Gilbert, 2017. "Joint modeling of longitudinal and survival data with the Cox model and two-phase sampling," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 136-159, January.
    12. Wei Yang & Dawei Xie & Qiang Pan & Harold I. Feldman & Wensheng Guo, 2017. "Joint Modeling of Repeated Measures and Competing Failure Events in a Study of Chronic Kidney Disease," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 504-524, December.
    13. Rizopoulos, Dimitris, 2016. "The R Package JMbayes for Fitting Joint Models for Longitudinal and Time-to-Event Data Using MCMC," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 72(i07).
    14. Martins, Thiago G. & Simpson, Daniel & Lindgren, Finn & Rue, Håvard, 2013. "Bayesian computing with INLA: New features," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 68-83.
    15. Shahedul A. Khan & Nyla Basharat, 2022. "Accelerated failure time models for recurrent event data analysis and joint modeling," Computational Statistics, Springer, vol. 37(4), pages 1569-1597, September.
    16. Liya Fu & Zhuoran Yang & Yan Zhou & You-Gan Wang, 2021. "An efficient Gehan-type estimation for the accelerated failure time model with clustered and censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(4), pages 679-709, October.
    17. Rui Martins, 2022. "A flexible link for joint modelling longitudinal and survival data accounting for individual longitudinal heterogeneity," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(1), pages 41-61, March.
    18. De la Cruz, Rolando & Meza, Cristian & Arribas-Gil, Ana & Carroll, Raymond J., 2016. "Bayesian regression analysis of data with random effects covariates from nonlinear longitudinal measurements," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 94-106.
    19. Walter Dempsey & Peter McCullagh, 2018. "Survival models and health sequences," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(4), pages 550-584, October.
    20. Tyler H. Matta & James Soland, 2019. "Predicting Time to Reclassification for English Learners: A Joint Modeling Approach," Journal of Educational and Behavioral Statistics, , vol. 44(1), pages 78-102, February.
    21. Zhang, Zili & Charalambous, Christiana & Foster, Peter, 2023. "A Gaussian copula joint model for longitudinal and time-to-event data with random effects," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    22. Horrocks, Julie & Rueffer, Matthew, 2014. "A Bayesian approach to estimating animal density from binary acoustic transects," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 17-25.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:amstat:v:58:y:2004:m:february:p:16-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/tas/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.