IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v32y2017i4d10.1007_s00180-017-0750-2.html
   My bibliography  Save this article

Bivariate nonparametric estimation of the Pickands dependence function using Bernstein copula with kernel regression approach

Author

Listed:
  • Alireza Ahmadabadi

    (Dokuz Eylul University)

  • Burcu Hudaverdi Ucer

    (Dokuz Eylul University)

Abstract

In this study, a new nonparametric approach using Bernstein copula approximation is proposed to estimate Pickands dependence function. New data points obtained with Bernstein copula approximation serve to estimate the unknown Pickands dependence function. Kernel regression method is then used to derive an intrinsic estimator satisfying the convexity. Some extreme-value copula models are used to measure the performance of the estimator by a comprehensive simulation study. Also, a real-data example is illustrated. The proposed Pickands estimator provides a flexible way to have a better fit and has a better performance than the conventional estimators.

Suggested Citation

  • Alireza Ahmadabadi & Burcu Hudaverdi Ucer, 2017. "Bivariate nonparametric estimation of the Pickands dependence function using Bernstein copula with kernel regression approach," Computational Statistics, Springer, vol. 32(4), pages 1515-1532, December.
  • Handle: RePEc:spr:compst:v:32:y:2017:i:4:d:10.1007_s00180-017-0750-2
    DOI: 10.1007/s00180-017-0750-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-017-0750-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-017-0750-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sancetta, Alessio, 2007. "Nonparametric estimation of distributions with given marginals via Bernstein-Kantorovich polynomials: L1 and pointwise convergence theory," Journal of Multivariate Analysis, Elsevier, vol. 98(7), pages 1376-1390, August.
    2. Néstor Aguilera & Liliana Forzani & Pedro Morin, 2011. "On uniform consistent estimators for convex regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(4), pages 897-908.
    3. Deheuvels, Paul, 1991. "On the limiting behavior of the Pickands estimator for bivariate extreme-value distributions," Statistics & Probability Letters, Elsevier, vol. 12(5), pages 429-439, November.
    4. Edward Frees & Emiliano Valdez, 1998. "Understanding Relationships Using Copulas," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 1-25.
    5. Sancetta, Alessio & Satchell, Stephen, 2004. "The Bernstein Copula And Its Applications To Modeling And Approximations Of Multivariate Distributions," Econometric Theory, Cambridge University Press, vol. 20(3), pages 535-562, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bouye, Eric & Durlleman, Valdo & Nikeghbali, Ashkan & Riboulet, Gaël & Roncalli, Thierry, 2000. "Copulas for finance," MPRA Paper 37359, University Library of Munich, Germany.
    2. Tavin, Bertrand, 2015. "Detection of arbitrage in a market with multi-asset derivatives and known risk-neutral marginals," Journal of Banking & Finance, Elsevier, vol. 53(C), pages 158-178.
    3. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    4. Ouimet, Frédéric, 2021. "Asymptotic properties of Bernstein estimators on the simplex," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    5. Kojadinovic, Ivan & Yan, Jun, 2010. "Nonparametric rank-based tests of bivariate extreme-value dependence," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2234-2249, October.
    6. Fabrizio Durante & Erich Klement & Carlo Sempi & Manuel Úbeda-Flores, 2010. "Measures of non-exchangeability for bivariate random vectors," Statistical Papers, Springer, vol. 51(3), pages 687-699, September.
    7. Tahsin Baykal, 2025. "Joint frequency analysis of streamflow and sediment amount with copula functions in the Kızlırmak Basin, Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(4), pages 4219-4238, March.
    8. Fabrizio Durante, 2009. "Construction of non-exchangeable bivariate distribution functions," Statistical Papers, Springer, vol. 50(2), pages 383-391, March.
    9. Matkovskyy, Roman, 2019. "Centralized and decentralized bitcoin markets: Euro vs USD vs GBP," The Quarterly Review of Economics and Finance, Elsevier, vol. 71(C), pages 270-279.
    10. Diba Daraei & Kristina Sendova, 2024. "Determining Safe Withdrawal Rates for Post-Retirement via a Ruin-Theory Approach," Risks, MDPI, vol. 12(4), pages 1-21, April.
    11. Cyril Caillault & Dominique Guegan, 2005. "Empirical estimation of tail dependence using copulas: application to Asian markets," Quantitative Finance, Taylor & Francis Journals, vol. 5(5), pages 489-501.
    12. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    13. Plischke, Elmar & Borgonovo, Emanuele, 2019. "Copula theory and probabilistic sensitivity analysis: Is there a connection?," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1046-1059.
    14. Jevtić, P. & Hurd, T.R., 2017. "The joint mortality of couples in continuous time," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 90-97.
    15. Einmahl, J.H.J. & Krajina, A. & Segers, J., 2011. "An M-Estimator for Tail Dependence in Arbitrary Dimensions," Discussion Paper 2011-013, Tilburg University, Center for Economic Research.
    16. Manuel Arellano & Stéphane Bonhomme, 2017. "Quantile Selection Models With an Application to Understanding Changes in Wage Inequality," Econometrica, Econometric Society, vol. 85, pages 1-28, January.
    17. Albrecher Hansjörg & Kantor Josef, 2002. "Simulation of ruin probabilities for risk processes of Markovian type," Monte Carlo Methods and Applications, De Gruyter, vol. 8(2), pages 111-128, December.
    18. repec:cte:werepe:we1212 is not listed on IDEAS
    19. Fils-Villetard, A. & Guillou, A. & Segers, J., 2005. "Projection Estimates of Constrained Functional Parameters," Discussion Paper 2005-111, Tilburg University, Center for Economic Research.
    20. Y. Malevergne & D. Sornette, 2003. "Testing the Gaussian copula hypothesis for financial assets dependences," Quantitative Finance, Taylor & Francis Journals, vol. 3(4), pages 231-250.
    21. Kojadinovic, Ivan & Yan, Jun, 2010. "Comparison of three semiparametric methods for estimating dependence parameters in copula models," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 52-63, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:32:y:2017:i:4:d:10.1007_s00180-017-0750-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.