IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v153y2021ics0167947320301493.html
   My bibliography  Save this article

Estimating scale-invariant directed dependence of bivariate distributions

Author

Listed:
  • Junker, Robert R.
  • Griessenberger, Florian
  • Trutschnig, Wolfgang

Abstract

Asymmetry of dependence is an inherent property of bivariate probability distributions. Being symmetric, commonly used dependence measures such as Pearson’s r or Spearman’s ρ mask asymmetry and implicitly assume that a random variable Y is equally dependent on a random variable X as vice versa. A copula-based, hence scale-invariant dependence measure called ζ1 overcoming the just mentioned problem was introduced in 2011. ζ1 attains values in [0,1], it is 0 if, and only if X and Y are independent, and 1 if, and only if Y is a measurable function of X. Working with so-called empirical checkerboard copulas allows to construct an estimator ζ1n for ζ1 which is strongly consistent in full generality, i.e., without any smoothness assumptions on the underlying copula. The R-package qad (short for quantification of asymmetric dependence) containing the estimator ζ1n is used both, to perform a simulation study illustrating the small sample performance of the estimator as well as to estimate the directed dependence between some global climate variables as well as between world development indicators.

Suggested Citation

  • Junker, Robert R. & Griessenberger, Florian & Trutschnig, Wolfgang, 2021. "Estimating scale-invariant directed dependence of bivariate distributions," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
  • Handle: RePEc:eee:csdana:v:153:y:2021:i:c:s0167947320301493
    DOI: 10.1016/j.csda.2020.107058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947320301493
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2020.107058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yan, Jun, 2007. "Enjoy the Joy of Copulas: With a Package copula," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 21(i04).
    2. Berghaus, Betina & Segers, Johan, 2017. "Weak convergence of the weighted empirical beta copula process," LIDAM Discussion Papers ISBA 2017015, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Roger Nelson, 2007. "Extremes of nonexchangeability," Statistical Papers, Springer, vol. 48(2), pages 329-336, April.
    4. Holger Dette & Karl F. Siburg & Pavel A. Stoimenov, 2013. "A Copula-Based Non-parametric Measure of Regression Dependence," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(1), pages 21-41, March.
    5. Al-Sadoon, Majid M., 2019. "Testing subspace Granger causality," Econometrics and Statistics, Elsevier, vol. 9(C), pages 42-61.
    6. Segers, Johan & Sibuya, Masaaki & Tsukahara, Hideatsu, 2017. "The empirical beta copula," LIDAM Reprints ISBA 2017005, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Okimoto, Tatsuyoshi, 2008. "New Evidence of Asymmetric Dependence Structures in International Equity Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 43(3), pages 787-815, September.
    8. Segers, Johan & Sibuya, Masaaki & Tsukahara, Hideatsu, 2017. "The empirical beta copula," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 35-51.
    9. Tomasz Kulpa, 1999. "On approximation of copulas," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 22, pages 1-11, January.
    10. Sancetta, Alessio & Satchell, Stephen, 2004. "The Bernstein Copula And Its Applications To Modeling And Approximations Of Multivariate Distributions," Econometric Theory, Cambridge University Press, vol. 20(3), pages 535-562, June.
    11. Lindo, Jason M., 2015. "Aggregation and the estimated effects of economic conditions on health," Journal of Health Economics, Elsevier, vol. 40(C), pages 83-96.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arriaza, Antonio & Navarro, Jorge & Ortega-Jiménez, Patricia, 2024. "Risk times in mission-oriented systems," LIDAM Discussion Papers ISBA 2024017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Dietmar Pfeifer & Olena Ragulina, 2020. "Adaptive Bernstein Copulas and Risk Management," Mathematics, MDPI, vol. 8(12), pages 1-22, December.
    3. Ansari Jonathan & Rockel Marcus, 2024. "Dependence properties of bivariate copula families," Dependence Modeling, De Gruyter, vol. 12(1), pages 1-36.
    4. Griessenberger Florian & Trutschnig Wolfgang, 2022. "Maximal asymmetry of bivariate copulas and consequences to measures of dependence," Dependence Modeling, De Gruyter, vol. 10(1), pages 245-269, January.
    5. Fuchs Sebastian & Trutschnig Wolfgang, 2020. "On quantile based co-risk measures and their estimation," Dependence Modeling, De Gruyter, vol. 8(1), pages 396-416, January.
    6. Wei, Zheng & Kim, Daeyoung, 2021. "Measure of asymmetric association for ordinal contingency tables via the bilinear extension copula," Statistics & Probability Letters, Elsevier, vol. 178(C).
    7. Fuchs Sebastian & Trutschnig Wolfgang, 2020. "On quantile based co-risk measures and their estimation," Dependence Modeling, De Gruyter, vol. 8(1), pages 396-416, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shih, Jia-Han & Emura, Takeshi, 2021. "On the copula correlation ratio and its generalization," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    2. Hofert, Marius & Prasad, Avinash & Zhu, Mu, 2022. "Multivariate time-series modeling with generative neural networks," Econometrics and Statistics, Elsevier, vol. 23(C), pages 147-164.
    3. Kiriliouk, Anna & Segers, Johan & Tafakori, Laleh, 2018. "An estimator of the stable tail dependence function based on the empirical beta copula," LIDAM Discussion Papers ISBA 2018029, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Eddie Anderson & Artem Prokhorov & Yajing Zhu, 2020. "A Simple Estimator of Two‐Dimensional Copulas, with Applications," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(6), pages 1375-1412, December.
    5. Dietmar Pfeifer & Olena Ragulina, 2020. "Adaptive Bernstein Copulas and Risk Management," Papers 2011.00909, arXiv.org, revised Mar 2021.
    6. Dietmar Pfeifer & Olena Ragulina, 2020. "Adaptive Bernstein Copulas and Risk Management," Mathematics, MDPI, vol. 8(12), pages 1-22, December.
    7. Lu Lu & Sujit Ghosh, 2023. "Nonparametric Estimation of Multivariate Copula Using Empirical Bayes Methods," Mathematics, MDPI, vol. 11(20), pages 1-22, October.
    8. Kiriliouk, Anna & Segers, Johan & Tafakori, Laleh, 2017. "An estimator of the stable tail dependence function based on the empirical beta copula," LIDAM Discussion Papers ISBA 2017028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Berghaus, Betina & Segers, Johan, 2017. "Weak convergence of the weighted empirical beta copula process," LIDAM Discussion Papers ISBA 2017015, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Kiriliouk, Anna, 2020. "Hypothesis testing for tail dependence parameters on the boundary of the parameter space," Econometrics and Statistics, Elsevier, vol. 16(C), pages 121-135.
    11. Aleksy Leeuwenkamp & Wentao Hu, 2023. "New general dependence measures: construction, estimation and application to high-frequency stock returns," Papers 2309.00025, arXiv.org.
    12. Berghaus, Betina & Segers, Johan, 2018. "Weak convergence of the weighted empirical beta copula process," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 266-281.
    13. Laverny, Oskar & Masiello, Esterina & Maume-Deschamps, Véronique & Rullière, Didier, 2021. "Dependence structure estimation using Copula Recursive Trees," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    14. Ćmiel, Bogdan & Ledwina, Teresa, 2020. "Validation of association," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 55-67.
    15. Blier-Wong, Christopher & Cossette, Hélène & Marceau, Etienne, 2022. "Stochastic representation of FGM copulas using multivariate Bernoulli random variables," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    16. Kojadinovic, Ivan & Stemikovskaya, Kristina, 2019. "Subsampling (weighted smooth) empirical copula processes," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 704-723.
    17. Kiriliouk, Anna & Segers, Johan & Tsukahara, Hideatsu, 2019. "On Some Resampling Procedures with the Empirical Beta Copula," LIDAM Discussion Papers ISBA 2019012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    18. Göran Kauermann & Christian Schellhase & David Ruppert, 2013. "Flexible Copula Density Estimation with Penalized Hierarchical B-splines," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 685-705, December.
    19. Fouad Marri & Khouzeima Moutanabbir, 2021. "Risk aggregation and capital allocation using a new generalized Archimedean copula," Papers 2103.10989, arXiv.org.
    20. Fouad Marri & Khouzeima Moutanabbir, 2021. "Risk aggregation and capital allocation using a new generalized Archimedean copula," Working Papers hal-03169291, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:153:y:2021:i:c:s0167947320301493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.