IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v178y2025i4d10.1007_s10584-025-03923-6.html
   My bibliography  Save this article

Towards net-zero emissions in global residential heating and cooling: a global scenario analysis

Author

Listed:
  • Alessio Mastrucci

    (International Institute for Applied Systems Analysis (IIASA))

  • Benigna Boza-Kiss

    (International Institute for Applied Systems Analysis (IIASA))

  • Bas Ruijven

    (International Institute for Applied Systems Analysis (IIASA))

Abstract

Accounting for 21% of global greenhouse gas (GHG) emissions, buildings play a crucial role in climate change mitigation. Demand-side policies offer large energy and GHG emission reduction potentials. The effects of broader sectoral policies at the global level beyond energy efficiency improvements, including sufficiency and structural changes, and their interaction with cross-sectoral climate policies are, however, still unclear. Here, we assess a comprehensive set of scenarios to reduce residential space heating and cooling emissions towards net-zero targets. We find that activity reductions, fuel shifts, and technological improvements can reduce current global residential space heating and cooling CO2 emissions by 57% relative to a reference scenario in 2050. Combining these demand-side policies and stringent climate policies could result in CO2 emission reductions up to 91% relative to the reference scenario in 2050. Neutralizing residual direct CO2 emissions would require additional interventions targeting fossil fuel-based heating systems still in use in 2050.

Suggested Citation

  • Alessio Mastrucci & Benigna Boza-Kiss & Bas Ruijven, 2025. "Towards net-zero emissions in global residential heating and cooling: a global scenario analysis," Climatic Change, Springer, vol. 178(4), pages 1-22, April.
  • Handle: RePEc:spr:climat:v:178:y:2025:i:4:d:10.1007_s10584-025-03923-6
    DOI: 10.1007/s10584-025-03923-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-025-03923-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-025-03923-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giraudet, Louis-Gaëtan & Guivarch, Céline & Quirion, Philippe, 2012. "Exploring the potential for energy conservation in French households through hybrid modeling," Energy Economics, Elsevier, vol. 34(2), pages 426-445.
    2. Ástmarsson, Björn & Jensen, Per Anker & Maslesa, Esmir, 2013. "Sustainable renovation of residential buildings and the landlord/tenant dilemma," Energy Policy, Elsevier, vol. 63(C), pages 355-362.
    3. Peter Berrill & Eric J. H. Wilson & Janet L. Reyna & Anthony D. Fontanini & Edgar G. Hertwich, 2022. "Author Correction: Decarbonization pathways for the residential sector in the United States," Nature Climate Change, Nature, vol. 12(11), pages 1068-1068, November.
    4. Keywan Riahi & Christoph Bertram & Daniel Huppmann & Joeri Rogelj & Valentina Bosetti & Anique-Marie Cabardos & Andre Deppermann & Laurent Drouet & Stefan Frank & Oliver Fricko & Shinichiro Fujimori &, 2021. "Cost and attainability of meeting stringent climate targets without overshoot," Nature Climate Change, Nature, vol. 11(12), pages 1063-1069, December.
    5. Lorek, Sylvia & Spangenberg, Joachim H., 2019. "Energy sufficiency through social innovation in housing," Energy Policy, Elsevier, vol. 126(C), pages 287-294.
    6. Peter Berrill & Eric J. H. Wilson & Janet L. Reyna & Anthony D. Fontanini & Edgar G. Hertwich, 2022. "Decarbonization pathways for the residential sector in the United States," Nature Climate Change, Nature, vol. 12(8), pages 712-718, August.
    7. Edoardo Ruffino & Bruno Piga & Alessandro Casasso & Rajandrea Sethi, 2022. "Heat Pumps, Wood Biomass and Fossil Fuel Solutions in the Renovation of Buildings: A Techno-Economic Analysis Applied to Piedmont Region (NW Italy)," Energies, MDPI, vol. 15(7), pages 1-25, March.
    8. Shittu, Ibrahim & Abdul Latiff, Abdul Rais & Baharudin, Siti ‘Aisyah & Mohd, Saidatulakmal, 2024. "Economy-wide impact of targeting and repurposing fossil fuel subsidies in Malaysia," Energy Policy, Elsevier, vol. 195(C).
    9. Weigert, Andreas & Hopf, Konstantin & Günther, Sebastian A. & Staake, Thorsten, 2022. "Heat pump inspections result in large energy savings when a pre-selection of households is performed: A promising use case of smart meter data," Energy Policy, Elsevier, vol. 169(C).
    10. Geller, Howard & Harrington, Philip & Rosenfeld, Arthur H. & Tanishima, Satoshi & Unander, Fridtjof, 2006. "Polices for increasing energy efficiency: Thirty years of experience in OECD countries," Energy Policy, Elsevier, vol. 34(5), pages 556-573, March.
    11. Johannes Thema & Felix Suerkemper & Johan Couder & Nora Mzavanadze & Souran Chatterjee & Jens Teubler & Stefan Thomas & Diana Ürge-Vorsatz & Martin Bo Hansen & Stefan Bouzarovski & Jana Rasch & Sabine, 2019. "The Multiple Benefits of the 2030 EU Energy Efficiency Potential," Energies, MDPI, vol. 12(14), pages 1-19, July.
    12. Clara Camarasa & Érika Mata & Juan Pablo Jiménez Navarro & Janet Reyna & Paula Bezerra & Gerd Brantes Angelkorte & Wei Feng & Faidra Filippidou & Sebastian Forthuber & Chioke Harris & Nina Holck Sandb, 2022. "A global comparison of building decarbonization scenarios by 2050 towards 1.5–2 °C targets," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Zhang, Ying & Zahoor, Zahid, 2025. "The role of energy subsidies, savings, and transitions in driving energy transformations toward net-zero emissions," Energy, Elsevier, vol. 320(C).
    14. Chepeliev, Maksym & van der Mensbrugghe, Dominique, 2020. "Global fossil-fuel subsidy reform and Paris Agreement," Energy Economics, Elsevier, vol. 85(C).
    15. Narasimha D. Rao & Jihoon Min, 2018. "Decent Living Standards: Material Prerequisites for Human Wellbeing," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 138(1), pages 225-244, July.
    16. Hondeborg, Dianne & Probst, Benedict & Petkov, Ivalin & Knoeri, Christof, 2023. "The effectiveness of building retrofits under a subsidy scheme: Empirical evidence from Switzerland," Energy Policy, Elsevier, vol. 180(C).
    17. Daioglou, Vassilis & Mikropoulos, Efstratios & Gernaat, David & van Vuuren, Detlef P., 2022. "Efficiency improvement and technology choice for energy and emission reductions of the residential sector," Energy, Elsevier, vol. 243(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Viktorija Bobinaite & Inga Konstantinaviciute & Arvydas Galinis & Mária Bartek-Lesi & Viktor Rácz & Bettina Dézsi, 2022. "Energy Sufficiency in the Household Sector of Lithuania and Hungary: The Case of Heated Floor Area," Sustainability, MDPI, vol. 14(23), pages 1-19, December.
    2. Rik van Heerden & Oreane Y Edelenbosch & Vassilis Daioglou & Thomas Le Gallic & Luiz Bernardo Baptista & Alice Di Bella & Francesco Pietro Colelli & Johannes Emmerling & Panagiotis Fragkos & Robin Has, 2025. "Demand-side strategies enable rapid and deep cuts in buildings and transport emissions to 2050," Post-Print hal-04985303, HAL.
    3. Zhang, Hongji & Ding, Tao & Sun, Yuge & Huang, Yuhan & He, Yuankang & Huang, Can & Li, Fangxing & Xue, Chen & Sun, Xiaoqiang, 2023. "How does load-side re-electrification help carbon neutrality in energy systems: Cost competitiveness analysis and life-cycle deduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    4. Zhang, Xiaoyi & Liu, Yan & Li, Yanxue & Lv, Xiaoyu & Xiao, Fu & Gao, Weijun, 2024. "Analyzing variability and coordinated demand management for various flexible integrations of residential distributed energy resources," Renewable Energy, Elsevier, vol. 237(PA).
    5. Al Kez, Dlzar & Foley, Aoife & Abdul, Zrar Khald & Del Rio, Dylan Furszyfer, 2024. "Energy poverty prediction in the United Kingdom: A machine learning approach," Energy Policy, Elsevier, vol. 184(C).
    6. Alina Galimshina & Maliki Moustapha & Alexander Hollberg & Sébastien Lasvaux & Bruno Sudret & Guillaume Habert, 2024. "Strategies for robust renovation of residential buildings in Switzerland," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Barbara Widera, 2024. "Energy and Carbon Savings in European Households Resulting from Behavioral Changes," Energies, MDPI, vol. 17(16), pages 1-36, August.
    8. David Frantz & Franz Schug & Dominik Wiedenhofer & André Baumgart & Doris Virág & Sam Cooper & Camila Gómez-Medina & Fabian Lehmann & Thomas Udelhoven & Sebastian Linden & Patrick Hostert & Helmut Hab, 2023. "Unveiling patterns in human dominated landscapes through mapping the mass of US built structures," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Mayer, Kevin & Haas, Lukas & Huang, Tianyuan & Bernabé-Moreno, Juan & Rajagopal, Ram & Fischer, Martin, 2023. "Estimating building energy efficiency from street view imagery, aerial imagery, and land surface temperature data," Applied Energy, Elsevier, vol. 333(C).
    10. repec:osf:osfxxx:t35aw_v1 is not listed on IDEAS
    11. Rik Heerden & Oreane Y. Edelenbosch & Vassilis Daioglou & Thomas Gallic & Luiz Bernardo Baptista & Alice Bella & Francesco Pietro Colelli & Johannes Emmerling & Panagiotis Fragkos & Robin Hasse & Joha, 2025. "Demand-side strategies enable rapid and deep cuts in buildings and transport emissions to 2050," Nature Energy, Nature, vol. 10(3), pages 380-394, March.
    12. M. Kanerva, 2022. "Consumption Corridors and the Case of Meat," Journal of Consumer Policy, Springer, vol. 45(4), pages 619-653, December.
    13. Stéphane Poncin, 2018. "Energy policy tools in Luxembourg - Assessing their impact on households’ space heating energy consumption and CO2 emissions by means of the LuxHEI model," DEM Discussion Paper Series 18-23, Department of Economics at the University of Luxembourg.
    14. Yan, Ran & Ma, Minda & Zhou, Nan & Feng, Wei & Xiang, Xiwang & Mao, Chao, 2023. "Towards COP27: Decarbonization patterns of residential building in China and India," Applied Energy, Elsevier, vol. 352(C).
    15. Riccardo Camboni & Alberto Corsini & Raffaele Miniaci & Paola Valbonesi, 2023. "CO2 emissions reduction from residential buildings: cost estimate and policy design," "Marco Fanno" Working Papers 0304, Dipartimento di Scienze Economiche "Marco Fanno".
    16. Hertwich, Edgar, 2024. "Unseen machines: illuminating equipment’s role in climate change mitigation and resource efficiency," OSF Preprints t35aw, Center for Open Science.
    17. Zhang, Shufan & Zhou, Nan & Feng, Wei & Ma, Minda & Xiang, Xiwang & You, Kairui, 2023. "Pathway for decarbonizing residential building operations in the US and China beyond the mid-century," Applied Energy, Elsevier, vol. 342(C).
    18. Zaim, Osman & Uygurtürk Gazel, Tuğçe & Akkemik, K. Ali, 2017. "Measuring energy intensity in Japan: A new method," European Journal of Operational Research, Elsevier, vol. 258(2), pages 778-789.
    19. Rutger Schilpzand & Jeroen Smits, 2025. "The Domestic Transition: Progress Towards Decent Living of Households in Low and Middle‐Income Countries," Journal of International Development, John Wiley & Sons, Ltd., vol. 37(2), pages 420-442, March.
    20. Rakhman, Fuad & Wijayana, Singgih, 2024. "Human development and the quality of financial reporting among the local governments in Indonesia," Journal of International Accounting, Auditing and Taxation, Elsevier, vol. 56(C).
    21. Florian Knobloch & Hector Pollitt & Unnada Chewpreecha & Vassilis Daioglou & Jean-Francois Mercure, 2017. "Simulating the deep decarbonisation of residential heating for limiting global warming to 1.5C," Papers 1710.11019, arXiv.org, revised May 2018.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:178:y:2025:i:4:d:10.1007_s10584-025-03923-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.