IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v177y2024i2d10.1007_s10584-024-03685-7.html
   My bibliography  Save this article

Climate projections of human thermal comfort for indoor workplaces

Author

Listed:
  • Markus Sulzer

    (University of Freiburg)

  • Andreas Christen

    (University of Freiburg)

Abstract

Climate models predict meteorological variables for outdoor spaces. Nevertheless, most people work indoors and are affected by heat indoors. We present an approach to transfer climate projections from outdoors to climate projections of indoor air temperature (Ti) and thermal comfort based on a combination of indoor sensors, artificial neural networks (ANNs), and 22 regional climate projections. Human thermal comfort and Ti measured by indoor sensors at 90 different workplaces in the Upper Rhine Valley were used as training data for ANN models predicting indoor conditions as a function of outdoor weather. Workplace-specific climate projections were modeled for the time period 2070–2099 and compared to the historical period 1970–1999 using the same ANNs, but ERA5-Land reanalysis data as input. It is shown that heat stress indoors will increase in intensity, frequency, and duration at almost all investigated workplaces. The rate of increase depends on building and room properties, the workplace purpose, and the representative concentration pathway (RCP2.6, RCP4.5, or RCP8.5). The projected increase of the mean air temperature in the summer (JJA) outdoors, by + 1.6 to + 5.1 K for the different RCPs, is higher than the increase in Ti at all 90 workplaces, which experience on average an increase of + 0.8 to + 2.5 K. The overall frequency of heat stress is higher at most workplaces than outdoors for the historical and the future period. The projected hours of indoor heat stress will increase on average by + 379 h, + 654 h, and + 1209 h under RCP2.6, RCP4.5, and RCP8.5, respectively.

Suggested Citation

  • Markus Sulzer & Andreas Christen, 2024. "Climate projections of human thermal comfort for indoor workplaces," Climatic Change, Springer, vol. 177(2), pages 1-22, February.
  • Handle: RePEc:spr:climat:v:177:y:2024:i:2:d:10.1007_s10584-024-03685-7
    DOI: 10.1007/s10584-024-03685-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-024-03685-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-024-03685-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. W. Arnell & J. A. Lowe & A. J. Challinor & T. J. Osborn, 2019. "Global and regional impacts of climate change at different levels of global temperature increase," Climatic Change, Springer, vol. 155(3), pages 377-391, August.
    2. Muñoz González, C.Mª & León Rodríguez, A.L. & Suárez Medina, R. & Ruiz Jaramillo, J., 2020. "Effects of future climate change on the preservation of artworks, thermal comfort and energy consumption in historic buildings," Applied Energy, Elsevier, vol. 276(C).
    3. Weijia Qian & Howard H. Chang, 2021. "Projecting Health Impacts of Future Temperature: A Comparison of Quantile-Mapping Bias-Correction Methods," IJERPH, MDPI, vol. 18(4), pages 1-12, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marek Borowski & Klaudia Zwolińska & Marcin Czerwiński, 2022. "An Experimental Study of Thermal Comfort and Indoor Air Quality—A Case Study of a Hotel Building," Energies, MDPI, vol. 15(6), pages 1-18, March.
    2. Sajid Khan & Zishan Ahmad Wani & Rameez Ahmad & Kailash S. Gaira & Susheel Verma, 2024. "Time series analysis of climatic variability and trends in Shiwalik to Pir Panjal mountain range in the Indian western Himalaya," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 20355-20377, August.
    3. Orkun Davutluoğlu & Abdurrahman Yavuzdeğer & Burak Esenboğa & Özge Demirdelen & Kübra Tümay Ateş & Tuğçe Demirdelen, 2024. "Carbon Emission Analysis and Reporting in Urban Emissions: An Analysis of the Greenhouse Gas Inventories and Climate Action Plans in Sarıçam Municipality," Sustainability, MDPI, vol. 16(10), pages 1-15, May.
    4. Michal Poljak & Radoslav Ponechal, 2023. "Microclimatic Monitoring—The Beginning of Saving Historical Sacral Buildings in Europe," Energies, MDPI, vol. 16(3), pages 1-20, January.
    5. De Masi, Rosa Francesca & Gigante, Antonio & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2021. "Impact of weather data and climate change projections in the refurbishment design of residential buildings in cooling dominated climate," Applied Energy, Elsevier, vol. 303(C).
    6. Swatantra Kumar Dubey & JungJin Kim & Syewoon Hwang & Younggu Her & Hanseok Jeong, 2023. "Variability of Extreme Events in Coastal and Inland Areas of South Korea during 1961–2020," Sustainability, MDPI, vol. 15(16), pages 1-17, August.
    7. Jieming Chou & Mingyang Sun & Wenjie Dong & Weixing Zhao & Jiangnan Li & Yuanmeng Li & Jianyin Zhou, 2021. "Assessment and Prediction of Climate Risks in Three Major Urban Agglomerations of Eastern China," Sustainability, MDPI, vol. 13(23), pages 1-21, November.
    8. Hugo Gaspar Hernandez-Palma & Vladimir Sousa Santos & Adalberto Ospino Castro & Angélica Jiménez Coronado & Roberto Morales Espinoza & Jonny Rafael Plazas Alvarado, 2024. "Sustainable Projects Based on the Intersection of Clean Energy with the Health Sector: A Bibliometric Review," International Journal of Energy Economics and Policy, Econjournals, vol. 14(3), pages 489-496, May.
    9. Ransford Opoku Darko & Flavio Odoi-Yorke & Agnes Abeley Abbey & Emmanuel Afutu & Joshua Danso Owusu-Sekyere & Livingstone Kobina Sam-Amoah & Lawerence Acheampong, 2025. "A Review of Climate Change Impacts on Irrigation Water Demand and Supply - A Detailed Analysis of Trends, Evolution, and Future Research Directions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(1), pages 17-45, January.
    10. Kelly Wanser & Sarah J. Doherty & James W. Hurrell & Alex Wong, 2022. "Near-term climate risks and sunlight reflection modification: a roadmap approach for physical sciences research," Climatic Change, Springer, vol. 174(3), pages 1-20, October.
    11. Dorina Camelia Ilies & Grigore Vasile Herman & Bahodirhon Safarov & Alexandru Ilies & Lucian Blaga & Tudor Caciora & Ana Cornelia Peres & Vasile Grama & Sigit Widodo Bambang & Telesphore Brou & Franco, 2023. "Indoor Air Quality Perception in Built Cultural Heritage in Times of Climate Change," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
    12. Sanad H. Ragab & Shatha I. Alqurashi & Mohammad M. Aljameeli & Michael G. Tyshenko & Ahmed H. Abdelwahab & Tharwat A. Selim, 2024. "Predicting the Global Distribution of Gryllus bimaculatus Under Climate Change: Implications for Biodiversity and Animal Feed Production," Sustainability, MDPI, vol. 16(23), pages 1-16, November.
    13. Cho, Hyun Mi & Yun, Beom Yeol & Kim, Young Uk & Yuk, Hyeonseong & Kim, Sumin, 2022. "Integrated retrofit solutions for improving the energy performance of historic buildings through energy technology suitability analyses: Retrofit plan of wooden truss and masonry composite structure i," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    14. Adam H. Sobel, 2021. "Usable climate science is adaptation science," Climatic Change, Springer, vol. 166(1), pages 1-11, May.
    15. Hartin, Corinne & Link, Robert & Patel, Pralit & Mundra, Anupriya & Horowitz, Russell & Dorheim, Kalyn & Clarke, Leon, 2021. "Integrated modeling of human-earth system interactions: An application of GCAM-fusion," Energy Economics, Elsevier, vol. 103(C).
    16. Belén Onecha & Alicia Dotor, 2021. "Simulation Method to Assess Thermal Comfort in Historical Buildings with High-Volume Interior Spaces—The Case of the Gothic Basilica of Sta. Maria del Mar in Barcelona," Sustainability, MDPI, vol. 13(5), pages 1-20, March.
    17. Anssi Paasi, 2023. "Regional geographies of climate change," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 114(2), pages 71-78, April.
    18. Paweł Sokołowski & Grzegorz Nawalany & Małgorzata Michalik, 2022. "Analysis of the Impact of Flooring Material and Construction Solutions on Heat Exchange with the Ground in a Historic Wooden Building," Energies, MDPI, vol. 15(16), pages 1-17, August.
    19. Yuchuan Lai & Matteo Pozzi, 2024. "Sequential learning of climate change via a physical-parameter-based state-space model and Bayesian inference," Climatic Change, Springer, vol. 177(6), pages 1-22, June.
    20. Belén Onecha & Eduardo Herrador & Rosnery Castillo & Montserrat Bosch, 2025. "Reaching Near-Zero Environmental Impact in Heritage Buildings: The Case of the Wine Cellar of Rocafort de Queralt," Sustainability, MDPI, vol. 17(2), pages 1-24, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:177:y:2024:i:2:d:10.1007_s10584-024-03685-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.