IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p5924-d888956.html
   My bibliography  Save this article

Analysis of the Impact of Flooring Material and Construction Solutions on Heat Exchange with the Ground in a Historic Wooden Building

Author

Listed:
  • Paweł Sokołowski

    (Department of Rural Building, Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland)

  • Grzegorz Nawalany

    (Department of Rural Building, Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland)

  • Małgorzata Michalik

    (Department of Rural Building, Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland)

Abstract

The article deals with the issue of the influence of selected material and construction solutions for a floor in a historic wooden building on heat exchange with the ground. The scope of the work included continuous measurements of selected parameters of internal and external microclimate, which were later used for numerical analysis of selected calculation variants. The research was carried out in a historic wooden church located in southern Poland. The research period covered 2019, while all measurements were performed every 1 h. For the variant analysis, a building with a wooden and stone floor was adopted. The influence of the heating system on the heat exchange with the ground for wooden and stone floors was also analysed. As a result of a detailed analysis, it was found that the material and construction solutions, as well as the heating system, have a significant impact on the formation of heat exchange with the ground. The building with a wooden floor was characterised by significantly higher values of energy losses to the ground in relation to heat gains. During the year, the total energy losses to land amounted to 1005 kWh, while the gain was 47 kWh. The energy flow from inside the building to the ground in August was 2.4 times higher in variant 2 than in variant 1. In February, heat losses to the ground were 1.6 times higher in variant 2 compared to variant 1.

Suggested Citation

  • Paweł Sokołowski & Grzegorz Nawalany & Małgorzata Michalik, 2022. "Analysis of the Impact of Flooring Material and Construction Solutions on Heat Exchange with the Ground in a Historic Wooden Building," Energies, MDPI, vol. 15(16), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5924-:d:888956
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/5924/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/5924/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Grzegorz Nawalany & Jana Lendelova & Paweł Sokołowski & Miroslav Zitnak, 2021. "Numerical Analysis of the Impact of the Location of a Commercial Broiler House on Its Energy Management and Heat Exchange with the Ground," Energies, MDPI, vol. 14(24), pages 1-17, December.
    2. Akkurt, G.G. & Aste, N. & Borderon, J. & Buda, A. & Calzolari, M. & Chung, D. & Costanzo, V. & Del Pero, C. & Evola, G. & Huerto-Cardenas, H.E. & Leonforte, F. & Lo Faro, A. & Lucchi, E. & Marletta, L, 2020. "Dynamic thermal and hygrometric simulation of historical buildings: Critical factors and possible solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    3. Grzegorz Nawalany & Paweł Sokołowski, 2020. "Improved Energy Management in an Intermittently Heated Building Using a Large Broiler House in Central Europe as an Example," Energies, MDPI, vol. 13(6), pages 1-12, March.
    4. Grzegorz Nawalany & Paweł Sokołowski, 2019. "Building–Soil Thermal Interaction: A Case Study," Energies, MDPI, vol. 12(15), pages 1-12, July.
    5. Biermann, Maximilian & Langner, Christian & Roussanaly, Simon & Normann, Fredrik & Harvey, Simon, 2022. "The role of energy supply in abatement cost curves for CO2 capture from process industry – A case study of a Swedish refinery," Applied Energy, Elsevier, vol. 319(C).
    6. Paweł Sokołowski & Grzegorz Nawalany, 2020. "Analysis of Energy Exchange with the Ground in a Two-Chamber Vegetable Cold Store, Assuming Different Lengths of Technological Break, with the Use of a Numerical Calculation Method—A Case Study," Energies, MDPI, vol. 13(18), pages 1-15, September.
    7. Grzegorz Nawalany & Paweł Sokołowski & Małgorzata Michalik, 2021. "Analysis of the Operation of an Unheated Wooden Church to the Shaping of Thermal and Humidity Conditions Using the Numerical Method," Energies, MDPI, vol. 14(16), pages 1-16, August.
    8. Muñoz González, C.Mª & León Rodríguez, A.L. & Suárez Medina, R. & Ruiz Jaramillo, J., 2020. "Effects of future climate change on the preservation of artworks, thermal comfort and energy consumption in historic buildings," Applied Energy, Elsevier, vol. 276(C).
    9. Grzegorz Nawalany & Paweł Sokołowski, 2021. "Numerical Analysis of the Effect of Ground Dampness on Heat Transfer between Greenhouse and Ground," Sustainability, MDPI, vol. 13(6), pages 1-10, March.
    10. Agnieszka Sadłowska-Sałęga & Krzysztof Wąs, 2021. "Moisture Risk Analysis for Three Construction Variants of a Wooden Inverted Flat Roof," Energies, MDPI, vol. 14(23), pages 1-20, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paweł Sokołowski & Grzegorz Nawalany & Tomasz Jakubowski & Ernest Popardowski & Vasyl Lopushniak & Atilgan Atilgan, 2022. "Numerical Analysis of Thermal Impact between the Cooling Facility and the Ground," Energies, MDPI, vol. 15(24), pages 1-16, December.
    2. Grzegorz Nawalany & Paweł Sokołowski, 2022. "Interaction between a Cyclically Heated Building and the Ground, for Selected Locations in Europe," Energies, MDPI, vol. 15(20), pages 1-17, October.
    3. Grzegorz Nawalany & Paweł Sokołowski, 2021. "Numerical Analysis of the Effect of Ground Dampness on Heat Transfer between Greenhouse and Ground," Sustainability, MDPI, vol. 13(6), pages 1-10, March.
    4. Eduardo Roque & Romeu Vicente & Ricardo M. S. F. Almeida & Victor M. Ferreira, 2022. "The Impact of Thermal Inertia on the Indoor Thermal Environment of Light Steel Framing Constructions," Energies, MDPI, vol. 15(9), pages 1-17, April.
    5. Cho, Hyun Mi & Yun, Beom Yeol & Kim, Young Uk & Yuk, Hyeonseong & Kim, Sumin, 2022. "Integrated retrofit solutions for improving the energy performance of historic buildings through energy technology suitability analyses: Retrofit plan of wooden truss and masonry composite structure i," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Andrea Longhitano & Vincenzo Costanzo & Gianpiero Evola & Francesco Nocera, 2024. "Microclimate Investigation in a Conference Room with Thermal Stratification: An Investigation of Different Air Conditioning Systems," Energies, MDPI, vol. 17(5), pages 1-17, March.
    7. Paweł Sokołowski & Grzegorz Nawalany, 2020. "Analysis of Energy Exchange with the Ground in a Two-Chamber Vegetable Cold Store, Assuming Different Lengths of Technological Break, with the Use of a Numerical Calculation Method—A Case Study," Energies, MDPI, vol. 13(18), pages 1-15, September.
    8. Agnieszka Leśniak & Monika Górka & Izabela Skrzypczak, 2021. "Barriers to BIM Implementation in Architecture, Construction, and Engineering Projects—The Polish Study," Energies, MDPI, vol. 14(8), pages 1-20, April.
    9. Marek Borowski & Klaudia Zwolińska & Marcin Czerwiński, 2022. "An Experimental Study of Thermal Comfort and Indoor Air Quality—A Case Study of a Hotel Building," Energies, MDPI, vol. 15(6), pages 1-18, March.
    10. Yue Yang & Kai Hu & Yibiao Liu & Zhihuang Wang & Kaihong Dong & Peijuan Lv & Xing Shi, 2023. "Optimisation of Building Green Performances Using Vertical Greening Systems: A Case Study in Changzhou, China," Sustainability, MDPI, vol. 15(5), pages 1-30, March.
    11. Alessia Buda & Ernst Jan de Place Hansen & Alexander Rieser & Emanuela Giancola & Valeria Natalina Pracchi & Sara Mauri & Valentina Marincioni & Virginia Gori & Kalliopi Fouseki & Cristina S. Polo Lóp, 2021. "Conservation-Compatible Retrofit Solutions in Historic Buildings: An Integrated Approach," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    12. Jerónimo Ramos-Teodoro & Adrián Giménez-Miralles & Francisco Rodríguez & Manuel Berenguel, 2020. "A Flexible Tool for Modeling and Optimal Dispatch of Resources in Agri-Energy Hubs," Sustainability, MDPI, vol. 12(21), pages 1-24, October.
    13. Michal Poljak & Radoslav Ponechal, 2023. "Microclimatic Monitoring—The Beginning of Saving Historical Sacral Buildings in Europe," Energies, MDPI, vol. 16(3), pages 1-20, January.
    14. Egusquiza, A. & Ginestet, S. & Espada, J.C. & Flores-Abascal, I. & Garcia-Gafaro, C. & Giraldo-Soto, C. & Claude, S. & Escadeillas, G., 2021. "Co-creation of local eco-rehabilitation strategies for energy improvement of historic urban areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    15. Amedeo Caprino & Filippo Lorenzoni & Laura Carnieletto & Leonardo Feletto & Michele De Carli & Francesca da Porto, 2021. "Integrated Seismic and Energy Retrofit Interventions on a URM Masonry Building: The Case Study of the Former Courthouse in Fabriano," Sustainability, MDPI, vol. 13(17), pages 1-30, August.
    16. Al-Awsh, Waleed A. & Qasem, Naef A.A. & Al-Amoudi, Omar S. Baghabra & Al-Osta, Mohammed A., 2020. "Experimental and numerical investigation on innovative masonry walls for industrial and residential buildings," Applied Energy, Elsevier, vol. 276(C).
    17. Belén Onecha & Alicia Dotor & Carlos Marmolejo-Duarte, 2021. "Beyond Cultural and Historic Values, Sustainability as a New Kind of Value for Historic Buildings," Sustainability, MDPI, vol. 13(15), pages 1-18, July.
    18. De Masi, Rosa Francesca & Gigante, Antonio & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2021. "Impact of weather data and climate change projections in the refurbishment design of residential buildings in cooling dominated climate," Applied Energy, Elsevier, vol. 303(C).
    19. Mirco Andreotti & Dario Bottino-Leone & Marta Calzolari & Pietromaria Davoli & Luisa Dias Pereira & Elena Lucchi & Alexandra Troi, 2020. "Applied Research of the Hygrothermal Behaviour of an Internally Insulated Historic Wall without Vapour Barrier: In Situ Measurements and Dynamic Simulations," Energies, MDPI, vol. 13(13), pages 1-22, July.
    20. Mariangela De Vita & Giulia Massari & Pierluigi De Berardinis, 2020. "Retrofit Methodology Based on Energy Simulation Modeling Applied for the Enhancement of a Historical Building in L’Aquila," Energies, MDPI, vol. 13(12), pages 1-26, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5924-:d:888956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.