IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i6p1537-d1616367.html
   My bibliography  Save this article

A New Customized Measurement System for a Non-Contact, Enhanced Thermometric Method

Author

Listed:
  • Luca Evangelisti

    (Department of Industrial, Electronic and Mechanical Engineering, Roma TRE University, Via Vito Volterra 62, 00146 Rome, Italy)

  • Edoardo De Cristo

    (Department of Industrial, Electronic and Mechanical Engineering, Roma TRE University, Via Vito Volterra 62, 00146 Rome, Italy)

  • Salvatore Monteleone

    (Department of Engineering, Niccolò Cusano University, Via Don Carlo Gnocchi 3, 00166 Rome, Italy)

  • Claudia Guattari

    (Department of Philosophy, Communication and Performing Arts, Roma TRE University, Via Ostiense 139, 00154 Rome, Italy)

  • Paola Gori

    (Department of Industrial, Electronic and Mechanical Engineering, Roma TRE University, Via Vito Volterra 62, 00146 Rome, Italy)

  • Ivan Pini

    (Department of Engineering, Niccolò Cusano University, Via Don Carlo Gnocchi 3, 00166 Rome, Italy)

  • Tullio de Rubeis

    (Department of Civil, Construction-Architectural and Environmental Engineering, University of L’Aquila, Piazzale Ernesto Pontieri, Monteluco di Roio, 67100 L’Aquila, Italy)

  • Dario Ambrosini

    (Department of Industrial and Information Engineering and Economics, University of L’Aquila, Piazzale Ernesto Pontieri, Monteluco di Roio, 67100 L’Aquila, Italy)

Abstract

This study introduces a novel, low-cost, non-contact measurement system for heat flux estimation based on an enhanced thermometric method. The customized system was designed and assembled to implement a non-contact, indirect approach for heat flux assessment. Developed as an affordable alternative to conventional contact-based techniques, it is suitable for historical buildings, where invasive sensors could compromise structural integrity. The system integrates real-time data acquisition, remote access via a web-based interface, and automated data processing, enhancing both usability and efficiency. Laboratory tests were conducted to evaluate its performance, with results compared against data from widely used heat flow plates and air/surface temperature sensors. The results showed good agreement between the proposed method and the reference data. Small differences were observed between the values measured by the air temperature sensors (0.10 °C on average), as well as by the contact and non-contact surface temperature sensors (0.12 °C on average). Finally, percentage variations between −6% and −5% in terms of heat fluxes confirmed the reliability of the non-contact approach. These findings provide a strong foundation for further testing, including applications in real buildings.

Suggested Citation

  • Luca Evangelisti & Edoardo De Cristo & Salvatore Monteleone & Claudia Guattari & Paola Gori & Ivan Pini & Tullio de Rubeis & Dario Ambrosini, 2025. "A New Customized Measurement System for a Non-Contact, Enhanced Thermometric Method," Energies, MDPI, vol. 18(6), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1537-:d:1616367
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/6/1537/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/6/1537/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Röck, Martin & Saade, Marcella Ruschi Mendes & Balouktsi, Maria & Rasmussen, Freja Nygaard & Birgisdottir, Harpa & Frischknecht, Rolf & Habert, Guillaume & Lützkendorf, Thomas & Passer, Alexander, 2020. "Embodied GHG emissions of buildings – The hidden challenge for effective climate change mitigation," Applied Energy, Elsevier, vol. 258(C).
    2. Akkurt, G.G. & Aste, N. & Borderon, J. & Buda, A. & Calzolari, M. & Chung, D. & Costanzo, V. & Del Pero, C. & Evola, G. & Huerto-Cardenas, H.E. & Leonforte, F. & Lo Faro, A. & Lucchi, E. & Marletta, L, 2020. "Dynamic thermal and hygrometric simulation of historical buildings: Critical factors and possible solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    3. Albatici, Rossano & Tonelli, Arnaldo M. & Chiogna, Michela, 2015. "A comprehensive experimental approach for the validation of quantitative infrared thermography in the evaluation of building thermal transmittance," Applied Energy, Elsevier, vol. 141(C), pages 218-228.
    4. Evi Lambie & Dirk Saelens, 2020. "Identification of the Building Envelope Performance of a Residential Building: A Case Study," Energies, MDPI, vol. 13(10), pages 1-28, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Excell, Lauren E. & Jain, Rishee K., 2024. "Examining the impact of energy efficiency retrofits and vegetation on energy performance of institutional buildings: An equity-driven analysis," Applied Energy, Elsevier, vol. 357(C).
    2. Rossano Albatici & Alessia Gadotti & Christian Baldessari & Michela Chiogna, 2016. "A Decision Making Tool for a Comprehensive Evaluation of Building Retrofitting Actions at the Regional Scale," Sustainability, MDPI, vol. 8(10), pages 1-17, September.
    3. Agnieszka Leśniak & Monika Górka & Izabela Skrzypczak, 2021. "Barriers to BIM Implementation in Architecture, Construction, and Engineering Projects—The Polish Study," Energies, MDPI, vol. 14(8), pages 1-20, April.
    4. Sofia Pastori & Riccardo Mereu & Enrico Sergio Mazzucchelli & Stefano Passoni & Giovanni Dotelli, 2021. "Energy Performance Evaluation of a Ventilated Façade System through CFD Modeling and Comparison with International Standards," Energies, MDPI, vol. 14(1), pages 1-26, January.
    5. Doo Sung Choi & Myeong Jin Ko, 2017. "Comparison of Various Analysis Methods Based on Heat Flowmeters and Infrared Thermography Measurements for the Evaluation of the In Situ Thermal Transmittance of Opaque Exterior Walls," Energies, MDPI, vol. 10(7), pages 1-22, July.
    6. Rasooli, Arash & Itard, Laure, 2019. "In-situ rapid determination of walls’ thermal conductivity, volumetric heat capacity, and thermal resistance, using response factors," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Theodosiou, Theodoros & Tsikaloudaki, Katerina & Kontoleon, Karolos & Giarma, Christina, 2021. "Assessing the accuracy of predictive thermal bridge heat flow methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    8. Bienvenido-Huertas, David & Moyano, Juan & Rodríguez-Jiménez, Carlos E. & Marín, David, 2019. "Applying an artificial neural network to assess thermal transmittance in walls by means of the thermometric method," Applied Energy, Elsevier, vol. 233, pages 1-14.
    9. James Allen & Ari Halberstadt & John Powers & Nael H. El-Farra, 2020. "An Optimization-Based Supervisory Control and Coordination Approach for Solar-Load Balancing in Building Energy Management," Mathematics, MDPI, vol. 8(8), pages 1-28, July.
    10. Seo-Hoon Kim & Jung-Hun Lee & Jong-Hun Kim & Seung-Hwan Yoo & Hak-Geun Jeong, 2018. "The Feasibility of Improving the Accuracy of In Situ Measurements in the Air-Surface Temperature Ratio Method," Energies, MDPI, vol. 11(7), pages 1-18, July.
    11. Jacek Michalak & Bartosz Michałowski, 2022. "Understanding Sustainability of Construction Products: Answers from Investors, Contractors, and Sellers of Building Materials," Sustainability, MDPI, vol. 14(5), pages 1-14, March.
    12. Maria Cristina Collivignarelli & Giacomo Cillari & Paola Ricciardi & Marco Carnevale Miino & Vincenzo Torretta & Elena Cristina Rada & Alessandro Abbà, 2020. "The Production of Sustainable Concrete with the Use of Alternative Aggregates: A Review," Sustainability, MDPI, vol. 12(19), pages 1-34, September.
    13. Marin Pellan & Denise Almeida & Mathilde Louërat & Guillaume Habert, 2024. "Integrating Consumption-Based Metrics into Sectoral Carbon Budgets to Enhance Sustainability Monitoring of Building Activities," Sustainability, MDPI, vol. 16(16), pages 1-25, August.
    14. Paweł Sokołowski & Grzegorz Nawalany & Małgorzata Michalik, 2022. "Analysis of the Impact of Flooring Material and Construction Solutions on Heat Exchange with the Ground in a Historic Wooden Building," Energies, MDPI, vol. 15(16), pages 1-17, August.
    15. Ciprian Cristea & Maria Cristea & Dan Doru Micu & Andrei Ceclan & Radu-Adrian Tîrnovan & Florica Mioara Șerban, 2022. "Tridimensional Sustainability and Feasibility Assessment of Grid-Connected Solar Photovoltaic Systems Applied for the Technical University of Cluj-Napoca," Sustainability, MDPI, vol. 14(17), pages 1-23, August.
    16. Alessia Buda & Ernst Jan de Place Hansen & Alexander Rieser & Emanuela Giancola & Valeria Natalina Pracchi & Sara Mauri & Valentina Marincioni & Virginia Gori & Kalliopi Fouseki & Cristina S. Polo Lóp, 2021. "Conservation-Compatible Retrofit Solutions in Historic Buildings: An Integrated Approach," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    17. Fahlstedt, Oskar & Temeljotov-Salaj, Alenka & Lohne, Jardar & Bohne, Rolf André, 2022. "Holistic assessment of carbon abatement strategies in building refurbishment literature — A scoping review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    18. Paweł Sokołowski & Grzegorz Nawalany & Tomasz Jakubowski & Ernest Popardowski & Vasyl Lopushniak & Atilgan Atilgan, 2022. "Numerical Analysis of Thermal Impact between the Cooling Facility and the Ground," Energies, MDPI, vol. 15(24), pages 1-16, December.
    19. Francesco Montana & Kai Kanafani & Kim B. Wittchen & Harpa Birgisdottir & Sonia Longo & Maurizio Cellura & Eleonora Riva Sanseverino, 2020. "Multi-Objective Optimization of Building Life Cycle Performance. A Housing Renovation Case Study in Northern Europe," Sustainability, MDPI, vol. 12(18), pages 1-25, September.
    20. Gonçalves, Juliana E. & Montazeri, Hamid & van Hooff, Twan & Saelens, Dirk, 2021. "Performance of building integrated photovoltaic facades: Impact of exterior convective heat transfer," Applied Energy, Elsevier, vol. 287(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1537-:d:1616367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.