IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2469-d358056.html
   My bibliography  Save this article

Identification of the Building Envelope Performance of a Residential Building: A Case Study

Author

Listed:
  • Evi Lambie

    (Building Physics Section, Department of Civil Engineering, KU Leuven, Kasteelpark Arenberg 40—Box 2447, BE-3001 Heverlee, Belgium
    Cities in Transition, EnergyVille, Thor Park 8310, BE-3600 Genk, Belgium)

  • Dirk Saelens

    (Building Physics Section, Department of Civil Engineering, KU Leuven, Kasteelpark Arenberg 40—Box 2447, BE-3001 Heverlee, Belgium
    Cities in Transition, EnergyVille, Thor Park 8310, BE-3600 Genk, Belgium)

Abstract

Since households are one of the most energy-intensive sectors in Europe, retrofit of dwellings is promoted to increase energy efficiency. Recent research, however, shows that the energy performance after retrofit does not always meet the target values, which can be caused by amongst other things, a deviating building envelope performance. This paper compares the theoretical and measured building envelope performance for a real-life case study in post-retrofit state, in order to illustrate the limitations of calculation methods and characterization models. First, the performance is evaluated on building scale by verifying the correspondence between the default theoretical heat loss coefficient (HLC) and the measured HLC, which was determined by following the guidelines formulated within IEA EBC Annex 58 and Annex 71. In order to illustrate the limitations of the standard calculation method in real-life conditions, the theoretical variability of the HLC is evaluated, generated by variating infiltration heat losses and heat exchange with neighboring dwellings. Second, the performance is investigated on a component scale by assessing the theoretical and measured thermal resistances, identified from heat flux tests. Additionally, nonhomogeneous assembled components and air leaks are simulated to verify probable causes for the locally varying measured values and to illustrate the limitations of calculations and characterization methods. The results illustrate the limitations of the calculation methods by the assessment of the strong variability of the theoretical HLC, depending on assumptions regarding infiltration and heat exchange with neighboring dwellings. In addition, component simulations indicated that deficiencies on a component scale could be caused by a nonhomogeneous assembly and air cavity flows of the component. Moreover, a detailed assessment of an unreliable thermal resistance illustrates the limitations of the used characterization method. Finally, a contrast was found between the quite good performance on building scale (15% deviation between the theoretical and measured HLC) and poor performance on a component scale (only one out of nine monitored components met their theoretical target values), which illustrates the complexity of the building envelope performance.

Suggested Citation

  • Evi Lambie & Dirk Saelens, 2020. "Identification of the Building Envelope Performance of a Residential Building: A Case Study," Energies, MDPI, vol. 13(10), pages 1-28, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2469-:d:358056
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2469/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2469/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ljubomir Jankovic, 2019. "Improving Building Energy Efficiency through Measurement of Building Physics Properties Using Dynamic Heating Tests," Energies, MDPI, vol. 12(8), pages 1-20, April.
    2. Aniela Kaminska, 2019. "Impact of Heating Control Strategy and Occupant Behavior on the Energy Consumption in a Building with Natural Ventilation in Poland," Energies, MDPI, vol. 12(22), pages 1-18, November.
    3. Szodrai, Ferenc & Lakatos, Ákos & Kalmár, Ferenc, 2016. "Analysis of the change of the specific heat loss coefficient of buildings resulted by the variation of the geometry and the moisture load," Energy, Elsevier, vol. 115(P1), pages 820-829.
    4. Naveed Ahmad & Christian Ghiaus & Thimothée Thiery, 2020. "Influence of Initial and Boundary Conditions on the Accuracy of the QUB Method to Determine the Overall Heat Loss Coefficient of a Building," Energies, MDPI, vol. 13(1), pages 1-24, January.
    5. Marieline Senave & Staf Roels & Stijn Verbeke & Evi Lambie & Dirk Saelens, 2019. "Sensitivity of Characterizing the Heat Loss Coefficient through On-Board Monitoring: A Case Study Analysis," Energies, MDPI, vol. 12(17), pages 1-29, August.
    6. Majcen, D. & Itard, L.C.M. & Visscher, H., 2013. "Theoretical vs. actual energy consumption of labelled dwellings in the Netherlands: Discrepancies and policy implications," Energy Policy, Elsevier, vol. 54(C), pages 125-136.
    7. Qadeer Ali & Muhammad Jamaluddin Thaheem & Fahim Ullah & Samad M. E. Sepasgozar, 2020. "The Performance Gap in Energy-Efficient Office Buildings: How the Occupants Can Help?," Energies, MDPI, vol. 13(6), pages 1-27, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xiang & Saelens, Dirk & Roels, Staf, 2022. "Estimating dynamic solar gains from on-site measured data: An ARX modelling approach," Applied Energy, Elsevier, vol. 321(C).
    2. Sofia Pastori & Riccardo Mereu & Enrico Sergio Mazzucchelli & Stefano Passoni & Giovanni Dotelli, 2021. "Energy Performance Evaluation of a Ventilated Façade System through CFD Modeling and Comparison with International Standards," Energies, MDPI, vol. 14(1), pages 1-26, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ardeshir Mahdavi & Christiane Berger & Hadeer Amin & Eleni Ampatzi & Rune Korsholm Andersen & Elie Azar & Verena M. Barthelmes & Matteo Favero & Jakob Hahn & Dolaana Khovalyg & Henrik N. Knudsen & Ale, 2021. "The Role of Occupants in Buildings’ Energy Performance Gap: Myth or Reality?," Sustainability, MDPI, vol. 13(6), pages 1-44, March.
    2. Przemysław Markiewicz-Zahorski & Joanna Rucińska & Małgorzata Fedorczak-Cisak & Michał Zielina, 2021. "Building Energy Performance Analysis after Changing Its Form of Use from an Office to a Residential Building," Energies, MDPI, vol. 14(3), pages 1-24, January.
    3. Rossano Albatici & Alessia Gadotti & Christian Baldessari & Michela Chiogna, 2016. "A Decision Making Tool for a Comprehensive Evaluation of Building Retrofitting Actions at the Regional Scale," Sustainability, MDPI, vol. 8(10), pages 1-17, September.
    4. Solène Goy & François Maréchal & Donal Finn, 2020. "Data for Urban Scale Building Energy Modelling: Assessing Impacts and Overcoming Availability Challenges," Energies, MDPI, vol. 13(16), pages 1-23, August.
    5. Curtis, John & Pentecost, Anne, 2015. "Household fuel expenditure and residential building energy efficiency ratings in Ireland," Energy Policy, Elsevier, vol. 76(C), pages 57-65.
    6. Fouladvand, Javanshir & Aranguren Rojas, Maria & Hoppe, Thomas & Ghorbani, Amineh, 2022. "Simulating thermal energy community formation: Institutional enablers outplaying technological choice," Applied Energy, Elsevier, vol. 306(PA).
    7. Filippidou, Faidra & Nieboer, Nico & Visscher, Henk, 2017. "Are we moving fast enough? The energy renovation rate of the Dutch non-profit housing using the national energy labelling database," Energy Policy, Elsevier, vol. 109(C), pages 488-498.
    8. Rasooli, Arash & Itard, Laure, 2019. "In-situ rapid determination of walls’ thermal conductivity, volumetric heat capacity, and thermal resistance, using response factors," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    9. Kaandorp, Chelsea & Miedema, Tes & Verhagen, Jeroen & van de Giesen, Nick & Abraham, Edo, 2022. "Reducing committed emissions of heating towards 2050: Analysis of scenarios for the insulation of buildings and the decarbonisation of electricity generation," Applied Energy, Elsevier, vol. 325(C).
    10. Hettinga, Sanne & van ’t Veer, Rein & Boter, Jaap, 2023. "Large scale energy labelling with models: The EU TABULA model versus machine learning with open data," Energy, Elsevier, vol. 264(C).
    11. Coyne, Bryan & Denny, Eleanor, 2021. "Retrofit effectiveness: Evidence from a nationwide residential energy efficiency programme," Energy Policy, Elsevier, vol. 159(C).
    12. Ahsen Maqsoom & Bilal Aslam & Muhammad Ehtisham Gul & Fahim Ullah & Abbas Z. Kouzani & M. A. Parvez Mahmud & Adnan Nawaz, 2021. "Using Multivariate Regression and ANN Models to Predict Properties of Concrete Cured under Hot Weather," Sustainability, MDPI, vol. 13(18), pages 1-28, September.
    13. Duk Joon Park & Ki Hyung Yu & Yong Sang Yoon & Kee Han Kim & Sun Sook Kim, 2015. "Analysis of a Building Energy Efficiency Certification System in Korea," Sustainability, MDPI, vol. 7(12), pages 1-22, December.
    14. Qadeer Ali & Muhammad Jamaluddin Thaheem & Fahim Ullah & Samad M. E. Sepasgozar, 2020. "The Performance Gap in Energy-Efficient Office Buildings: How the Occupants Can Help?," Energies, MDPI, vol. 13(6), pages 1-27, March.
    15. Christoffer Rasmussen & Peder Bacher & Davide Calì & Henrik Aalborg Nielsen & Henrik Madsen, 2020. "Method for Scalable and Automatised Thermal Building Performance Documentation and Screening," Energies, MDPI, vol. 13(15), pages 1-23, July.
    16. Samuel Domínguez-Amarillo & Jesica Fernández-Agüera & Juan José Sendra & Susan Roaf, 2018. "Rethinking User Behaviour Comfort Patterns in the South of Spain—What Users Really Do," Sustainability, MDPI, vol. 10(12), pages 1-18, November.
    17. Gábor L. Szabó, 2020. "Thermo-Chemical Instability and Energy Analysis of Absorption Heat Pumps," Energies, MDPI, vol. 13(8), pages 1-13, April.
    18. Ebrahimigharehbaghi, Shima & Qian, Queena K. & Meijer, Frits M. & Visscher, Henk J., 2019. "Unravelling Dutch homeowners' behaviour towards energy efficiency renovations: What drives and hinders their decision-making?," Energy Policy, Elsevier, vol. 129(C), pages 546-561.
    19. Ballarini, Ilaria & Corgnati, Stefano Paolo & Corrado, Vincenzo, 2014. "Use of reference buildings to assess the energy saving potentials of the residential building stock: The experience of TABULA project," Energy Policy, Elsevier, vol. 68(C), pages 273-284.
    20. Wei JIANG & Xuhui ZHANG, 2017. "Energy Labeling System of Urban Residential Buildings: Market Effect and Operating Mechanism — A Case Study of Energy-Saving Renovations in the Netherlands and Its Implications," Chinese Journal of Urban and Environmental Studies (CJUES), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2469-:d:358056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.