IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v170y2022i1d10.1007_s10584-021-03298-4.html
   My bibliography  Save this article

Advances and challenges in climate modeling

Author

Listed:
  • Omid Alizadeh

    (University of Tehran)

Abstract

In spite of the chaotic nature of the atmosphere and involvement of complex nonlinear dynamics, forecasting climate fluctuations over different timescales is feasible due to the interaction between the atmosphere and the slowly varying underlying surfaces. This review provides insights into climate predictions across subseasonal to decadal timescales and into making projections of future climate change. Different sources of uncertainty in climate predictions are discussed, including internal variability uncertainty, which is large for short-term predictions of up to a decade or two, model uncertainty for predictions at all timescales, and scenario uncertainty for climate change projections at the end of this century. Climate models have been significantly improved in recent decades, mostly through improved parameterization of unresolved processes and enhancement of the spatial resolution, while ensemble forecasting has also been developed to capture strong predictable signals. Future research should aim to reduce uncertainty in climate predictions, for example, through the application of high-resolution climate models. However, sub-grid-scale features would still be parameterized, underlining the need for further improvements in physical parameterizations to account for sub-grid-scale processes. There is also a need for improvement and extension of the current observing system, which will greatly advance understanding of the key processes and features in the climate system. The advanced observing system in the future will also be beneficial for more accurate representation of the initial state of the components of the climate system in order to obtain more accurate climate predictions. In spite of progress in model development, the spread of projected precipitation by different models under a specific radiative forcing of greenhouse gases is still large at the regional scale. Improving future projections of regional precipitation requires better accounting for internal variability and model uncertainty, which can be partly achieved by improvement and extension of the observing system.

Suggested Citation

  • Omid Alizadeh, 2022. "Advances and challenges in climate modeling," Climatic Change, Springer, vol. 170(1), pages 1-26, January.
  • Handle: RePEc:spr:climat:v:170:y:2022:i:1:d:10.1007_s10584-021-03298-4
    DOI: 10.1007/s10584-021-03298-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-021-03298-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-021-03298-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, William Y.Y. & Liu, Yubao & Bourgeois, Alfred J. & Wu, Yonghui & Haupt, Sue Ellen, 2017. "Short-term wind forecast of a data assimilation/weather forecasting system with wind turbine anemometer measurement assimilation," Renewable Energy, Elsevier, vol. 107(C), pages 340-351.
    2. N. H. Saji & B. N. Goswami & P. N. Vinayachandran & T. Yamagata, 1999. "A dipole mode in the tropical Indian Ocean," Nature, Nature, vol. 401(6751), pages 360-363, September.
    3. Norman McFarlane, 2011. "Parameterizations: representing key processes in climate models without resolving them," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 2(4), pages 482-497, July.
    4. Katy Roelich & Jannik Giesekam, 2019. "Decision making under uncertainty in climate change mitigation: introducing multiple actor motivations, agency and influence," Climate Policy, Taylor & Francis Journals, vol. 19(2), pages 175-188, February.
    5. Mark Maslin & Patrick Austin, 2012. "Climate models at their limit?," Nature, Nature, vol. 486(7402), pages 183-184, June.
    6. Toshihiko Masui & Kenichi Matsumoto & Yasuaki Hijioka & Tsuguki Kinoshita & Toru Nozawa & Sawako Ishiwatari & Etsushi Kato & P. Shukla & Yoshiki Yamagata & Mikiko Kainuma, 2011. "An emission pathway for stabilization at 6 Wm −2 radiative forcing," Climatic Change, Springer, vol. 109(1), pages 59-76, November.
    7. Peter J. Webster & Andrew M. Moore & Johannes P. Loschnigg & Robert R. Leben, 1999. "Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98," Nature, Nature, vol. 401(6751), pages 356-360, September.
    8. Jie Chen & François P. Brissette & Daniel Caya, 2020. "Remaining error sources in bias-corrected climate model outputs," Climatic Change, Springer, vol. 162(2), pages 563-582, September.
    9. Paul N. Edwards, 2011. "History of climate modeling," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 2(1), pages 128-139, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. Chiru Naik & Sagar Rohidas Chavan & P. Sonali, 2023. "Incorporating the climate oscillations in the computation of meteorological drought over India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2617-2646, July.
    2. Christopher Hassall & Michael Nisbet & Evan Norcliffe & He Wang, 2024. "The Potential Health Benefits of Urban Tree Planting Suggested through Immersive Environments," Land, MDPI, vol. 13(3), pages 1-12, February.
    3. D. Santillán & L. Garrote & A. Iglesias & V. Sotes, 2020. "Climate change risks and adaptation: new indicators for Mediterranean viticulture," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 881-899, May.
    4. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    5. Weiqing Han & Lei Zhang & Gerald A. Meehl & Shoichiro Kido & Tomoki Tozuka & Yuanlong Li & Michael J. McPhaden & Aixue Hu & Anny Cazenave & Nan Rosenbloom & Gary Strand & B. Jason West & Wen Xing, 2022. "Sea level extremes and compounding marine heatwaves in coastal Indonesia," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Speers, Ann E. & Besedin, Elena Y. & Palardy, James E. & Moore, Chris, 2016. "Impacts of climate change and ocean acidification on coral reef fisheries: An integrated ecological–economic model," Ecological Economics, Elsevier, vol. 128(C), pages 33-43.
    7. Lea Berrang‐Ford & Friederike Döbbe & Ruth Garside & Neal Haddaway & William F. Lamb & Jan C. Minx & Wolfgang Viechtbauer & Vivian Welch & Howard White, 2020. "Editorial: Evidence synthesis for accelerated learning on climate solutions," Campbell Systematic Reviews, John Wiley & Sons, vol. 16(4), December.
    8. Nisa Anil & M. R. Ramesh Kumar & R. Sajeev & P. K. Saji, 2016. "Role of distinct flavours of IOD events on Indian summer monsoon," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 1317-1326, June.
    9. Andrew John & Avril Horne & Rory Nathan & Michael Stewardson & J. Angus Webb & Jun Wang & N. LeRoy Poff, 2021. "Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    10. Lowes, Richard & Woodman, Bridget, 2020. "Disruptive and uncertain: Policy makers’ perceptions on UK heat decarbonisation," Energy Policy, Elsevier, vol. 142(C).
    11. Akio Kitoh, 2007. "Variability of Indian monsoon-ENSO relationship in a 1000-year MRI-CGCM2.2 simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 42(2), pages 261-272, August.
    12. Iskhaq Iskandar & Deni Okta Lestari & Agus Dwi Saputra & Riza Yuliratno Setiawan & Anindya Wirasatriya & Raden Dwi Susanto & Wijaya Mardiansyah & Muhammad Irfan & Rozirwan & Joga Dharma Setiawan & Kun, 2022. "Extreme Positive Indian Ocean Dipole in 2019 and Its Impact on Indonesia," Sustainability, MDPI, vol. 14(22), pages 1-15, November.
    13. Anni Arumsari Fitriany & Piotr J. Flatau & Khoirunurrofik Khoirunurrofik & Nelly Florida Riama, 2021. "Assessment on the Use of Meteorological and Social Media Information for Forest Fire Detection and Prediction in Riau, Indonesia," Sustainability, MDPI, vol. 13(20), pages 1-13, October.
    14. R. S. Akhila & J. Kuttippurath & R. Rahul & A. Chakraborty, 2022. "Genesis and simultaneous occurrences of the super cyclone Kyarr and extremely severe cyclone Maha in the Arabian Sea in October 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1133-1150, September.
    15. Yadav Prasad Joshi & Eun-Hye Kim & Jong-Hun Kim & Ho Kim & Hae-Kwan Cheong, 2016. "Associations between Meteorological Factors and Aseptic Meningitis in Six Metropolitan Provinces of the Republic of Korea," IJERPH, MDPI, vol. 13(12), pages 1-12, November.
    16. Odette Deuber & Gunnar Luderer & Robert Sausen, 2014. "CO 2 equivalences for short-lived climate forcers," Climatic Change, Springer, vol. 122(4), pages 651-664, February.
    17. Minna Havukainen & Mirja Mikkilä & Helena Kahiluoto, 2022. "Climate Policy Reform in Nepal through the Lenses of the Institutional Analysis and Development Framework," Sustainability, MDPI, vol. 14(12), pages 1-21, June.
    18. Tobias Lung & Alessandro Dosio & William Becker & Carlo Lavalle & Laurens Bouwer, 2013. "Assessing the influence of climate model uncertainty on EU-wide climate change impact indicators," Climatic Change, Springer, vol. 120(1), pages 211-227, September.
    19. Tang, Zhenhao & Zhao, Gengnan & Ouyang, Tinghui, 2021. "Two-phase deep learning model for short-term wind direction forecasting," Renewable Energy, Elsevier, vol. 173(C), pages 1005-1016.
    20. Joel Katzav & Wendy Parker, 2015. "The future of climate modeling," Climatic Change, Springer, vol. 132(4), pages 475-487, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:170:y:2022:i:1:d:10.1007_s10584-021-03298-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.