Author
Abstract
Precipitation prediction in mountainous regions is one of the most challenging topics in numerical weather prediction (NWP) models. This study aims to compare two types of NWP models: the General Circulation Model–Global Forecast System (GCM–GFS) and the mesoscale Weather Research and Forecasting (WRF). The comparison is based on various early lead-times (1, 3, and 5 days) in precipitation prediction and, consequently, flood forecasting in the northern parts of the Zagros Mountains, Iran. For this purpose, five observational flood events were selected in the region. To optimize the WRF model’s configuration, twelve setups were tested by combining microphysical and planetary boundary layer schemes. The Morrison and YSU schemes demonstrated superior performance in precipitation prediction. Comparative analysis of WRF and GFS model outputs revealed WRF’s better performance in point analysis using the nearest-neighbors method, while GFS exhibited greater reliability for mean areal precipitation. Subsequently, flood simulation was performed using the HEC-HMS model. Precipitation predicted by the GFS and WRF models was introduced to the HEC-HMS model in three early lead-times for flood forecast in all three domains of 3, 9, and 27 km. The results showed that in both the precipitation forecast and flood hydrographs produced by the HEC-HMS model, in most cases, the forecasting performance decreased with increasing early lead-time. Overall, based on the results of this study, the third domain of the mesoscale WRF model did not demonstrate significant added value over GFS outputs in most events. This underscores the necessity of focusing on reducing uncertainties and applying bias correction to the model outputs before their use in hydrological simulations, particularly in regions with complex topography.
Suggested Citation
Sajad Mahmoudi & Ali Reza Massah Bavani & Parvin Ghafarian, 2025.
"Comparing the outputs of general circulation and mesoscale models in the flood forecasts of mountainous basins,"
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(7), pages 8211-8239, April.
Handle:
RePEc:spr:nathaz:v:121:y:2025:i:7:d:10.1007_s11069-025-07131-4
DOI: 10.1007/s11069-025-07131-4
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:7:d:10.1007_s11069-025-07131-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.