IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v127y2014i3p547-560.html
   My bibliography  Save this article

Statistical downscaling of climate impact indices: testing the direct approach

Author

Listed:
  • A. Casanueva
  • M. Frías
  • S. Herrera
  • D. San-Martín
  • K. Zaninovic
  • J. Gutiérrez

Abstract

Climate Impact Indices (CIIs) are being increasingly used in different socioeconomic sectors to transfer information about climate change impacts to stakeholders. Typically, CIIs comprise into a single index several weather variables —such as temperature, wind speed, precipitation and humidity— which are relevant for a particular problem of interest. Moreover, most of the CIIs require daily (or monthly) physical coherence among these variables for their proper calculation. This constraints the number of statistical downscaling techniques suitable for a component-wise approach to this problem. We test the suitability of the alternative “direct” downscaling approach in which the downscaling method is applied directly to the CII, thus circumventing the multi-variable problem and allowing the use of a wider range of downscaling methods. For illustrative purposes, we consider two popular CIIs —the Fire Weather Index (FWI) and the Physiological Equivalent Temperature (PET), used in the wildfire and tourism sectors, respectively— and compare the performance of the two approaches using the analog method, a simple and popular method providing inter-variable dependence. The results obtained with ‘perfect’ reanalysis predictors are comparable for both approaches, although smaller accuracy is obtained in general with the direct approach. Moreover, similar climate change ‘deltas’ are obtained with both approaches when applied to an illustrative future global projection using the ECHAM5 model. Overall, there is a trade-off between performance and simplicity which needs to be balanced for each particular application. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • A. Casanueva & M. Frías & S. Herrera & D. San-Martín & K. Zaninovic & J. Gutiérrez, 2014. "Statistical downscaling of climate impact indices: testing the direct approach," Climatic Change, Springer, vol. 127(3), pages 547-560, December.
  • Handle: RePEc:spr:climat:v:127:y:2014:i:3:p:547-560
    DOI: 10.1007/s10584-014-1270-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-014-1270-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-014-1270-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Renate Wilcke & Thomas Mendlik & Andreas Gobiet, 2013. "Multi-variable error correction of regional climate models," Climatic Change, Springer, vol. 120(4), pages 871-887, October.
    2. J. Bedia & S. Herrera & A. Camia & J. Moreno & J. Gutiérrez, 2014. "Erratum to: Forest fire danger projections in the Mediterranean using ENSEMBLES regional climate change scenarios," Climatic Change, Springer, vol. 123(2), pages 343-344, March.
    3. J. Bedia & S. Herrera & A. Camia & J. M. Moreno & J. M. Gutiérrez, 2014. "Forest fire danger projections in the Mediterranean using ENSEMBLES regional climate change scenarios," Climatic Change, Springer, vol. 122(1), pages 185-199, January.
    4. S. Samadi & Gregory Carbone & M. Mahdavi & F. Sharifi & M. Bihamta, 2013. "Statistical Downscaling of River Runoff in a Semi Arid Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 117-136, January.
    5. J. Bedia & S. Herrera & D. Martín & N. Koutsias & J. Gutiérrez, 2013. "Robust projections of Fire Weather Index in the Mediterranean using statistical downscaling," Climatic Change, Springer, vol. 120(1), pages 229-247, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piyush Jain & Mari R. Tye & Debasish Paimazumder & Mike Flannigan, 2020. "Downscaling fire weather extremes from historical and projected climate models," Climatic Change, Springer, vol. 163(1), pages 189-216, November.
    2. Enoch Bessah & Emmanuel A. Boakye & Sampson K. Agodzo & Emmanuel Nyadzi & Isaac Larbi & Alfred Awotwi, 2021. "Increased seasonal rainfall in the twenty-first century over Ghana and its potential implications for agriculture productivity," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12342-12365, August.
    3. Eric Kemp-Benedict & Crystal Drakes & Nella Canales, 2020. "A Climate-Economy Policy Model for Barbados," Economies, MDPI, vol. 8(1), pages 1-21, February.
    4. A. Casanueva & J. Bedia & S. Herrera & J. Fernández & J. M. Gutiérrez, 2018. "Direct and component-wise bias correction of multi-variate climate indices: the percentile adjustment function diagnostic tool," Climatic Change, Springer, vol. 147(3), pages 411-425, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Casanueva & J. Bedia & S. Herrera & J. Fernández & J. M. Gutiérrez, 2018. "Direct and component-wise bias correction of multi-variate climate indices: the percentile adjustment function diagnostic tool," Climatic Change, Springer, vol. 147(3), pages 411-425, April.
    2. André Vizinho & David Avelar & Cristina Branquinho & Tiago Capela Lourenço & Silvia Carvalho & Alice Nunes & Leonor Sucena-Paiva & Hugo Oliveira & Ana Lúcia Fonseca & Filipe Duarte Santos & Maria José, 2021. "Framework for Climate Change Adaptation of Agriculture and Forestry in Mediterranean Climate Regions," Land, MDPI, vol. 10(2), pages 1-33, February.
    3. Gabriele Vissio & Marco Turco & Antonello Provenzale, 2023. "Testing drought indicators for summer burned area prediction in Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 1125-1137, March.
    4. Olga M. Lozano & Michele Salis & Alan A. Ager & Bachisio Arca & Fermin J. Alcasena & Antonio T. Monteiro & Mark A. Finney & Liliana Del Giudice & Enrico Scoccimarro & Donatella Spano, 2017. "Assessing Climate Change Impacts on Wildfire Exposure in Mediterranean Areas," Risk Analysis, John Wiley & Sons, vol. 37(10), pages 1898-1916, October.
    5. Giuseppe Bombino & Daniela D’Agostino & Pasquale A. Marziliano & Pedro Pérez Cutillas & Salvatore Praticò & Andrea R. Proto & Leonardo M. Manti & Giuseppina Lofaro & Santo M. Zimbone, 2024. "A Nature-Based Approach Using Felled Burnt Logs to Enhance Forest Recovery Post-Fire and Reduce Erosion Phenomena in the Mediterranean Area," Land, MDPI, vol. 13(2), pages 1-29, February.
    6. Lasanta, Teodoro & Cortijos-López, Melani & Errea, M. Paz & Khorchani, Makki & Nadal-Romero, Estela, 2022. "An environmental management experience to control wildfires in the mid-mountain mediterranean area: Shrub clearing to generate mosaic landscapes," Land Use Policy, Elsevier, vol. 118(C).
    7. Pascalle Smith & Georg Heinrich & Martin Suklitsch & Andreas Gobiet & Markus Stoffel & Jürg Fuhrer, 2014. "Station-scale bias correction and uncertainty analysis for the estimation of irrigation water requirements in the Swiss Rhone catchment under climate change," Climatic Change, Springer, vol. 127(3), pages 521-534, December.
    8. Jew Das & Nanduri V. Umamahesh, 2016. "Downscaling Monsoon Rainfall over River Godavari Basin under Different Climate-Change Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5575-5587, December.
    9. Marco Turco & Maria-Carmen Llasat & Jost Hardenberg & Antonello Provenzale, 2014. "Climate change impacts on wildfires in a Mediterranean environment," Climatic Change, Springer, vol. 125(3), pages 369-380, August.
    10. Marion Lestienne & Boris Vannière & Thomas Curt & Isabelle Jouffroy-Bapicot & Christelle Hély, 2022. "Climate-driven Mediterranean fire hazard assessments for 2020–2100 on the light of past millennial variability," Climatic Change, Springer, vol. 170(1), pages 1-18, January.
    11. Yi Yang & Jianping Tang, 2023. "Downscaling and uncertainty analysis of future concurrent long-duration dry and hot events in China," Climatic Change, Springer, vol. 176(2), pages 1-25, February.
    12. Valentina Bacciu & Maria Hatzaki & Anna Karali & Adeline Cauchy & Christos Giannakopoulos & Donatella Spano & Elodie Briche, 2021. "Investigating the Climate-Related Risk of Forest Fires for Mediterranean Islands’ Blue Economy," Sustainability, MDPI, vol. 13(18), pages 1-22, September.
    13. Piyush Jain & Mari R. Tye & Debasish Paimazumder & Mike Flannigan, 2020. "Downscaling fire weather extremes from historical and projected climate models," Climatic Change, Springer, vol. 163(1), pages 189-216, November.
    14. Zafar Iqbal & Shamsuddin Shahid & Tarmizi Ismail & Zulfaqar Sa’adi & Aitazaz Farooque & Zaher Mundher Yaseen, 2022. "Distributed Hydrological Model Based on Machine Learning Algorithm: Assessment of Climate Change Impact on Floods," Sustainability, MDPI, vol. 14(11), pages 1-30, May.
    15. Philippe Roudier & Jafet C. M. Andersson & Chantal Donnelly & Luc Feyen & Wouter Greuell & Fulco Ludwig, 2016. "Projections of future floods and hydrological droughts in Europe under a +2°C global warming," Climatic Change, Springer, vol. 135(2), pages 341-355, March.
    16. Mohamed Salem Nashwan & Shamsuddin Shahid & Eun-Sung Chung, 2020. "High-Resolution Climate Projections for a Densely Populated Mediterranean Region," Sustainability, MDPI, vol. 12(9), pages 1-22, May.
    17. Victoria M. Garibay & Margaret W. Gitau & Nicholas Kiggundu & Daniel Moriasi & Fulgence Mishili, 2021. "Evaluation of Reanalysis Precipitation Data and Potential Bias Correction Methods for Use in Data-Scarce Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(5), pages 1587-1602, March.
    18. Hamish Clarke & Andrew J. Pitman & Jatin Kala & Claire Carouge & Vanessa Haverd & Jason P. Evans, 2016. "An investigation of future fuel load and fire weather in Australia," Climatic Change, Springer, vol. 139(3), pages 591-605, December.
    19. Martin Hanel & Magdalena Mrkvičková & Petr Máca & Adam Vizina & Pavel Pech, 2013. "Evaluation of Simple Statistical Downscaling Methods for Monthly Regional Climate Model Simulations with Respect to the Estimated Changes in Runoff in the Czech Republic," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 5261-5279, December.
    20. Markus Stoffel & Thomas Mendlik & Michelle Schneuwly-Bollschweiler & Andreas Gobiet, 2014. "Possible impacts of climate change on debris-flow activity in the Swiss Alps," Climatic Change, Springer, vol. 122(1), pages 141-155, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:127:y:2014:i:3:p:547-560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.