IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v125y2014i3p369-380.html
   My bibliography  Save this article

Climate change impacts on wildfires in a Mediterranean environment

Author

Listed:
  • Marco Turco
  • Maria-Carmen Llasat
  • Jost Hardenberg
  • Antonello Provenzale

Abstract

We analyse the observed climate-driven changes in summer wildfires and their future evolution in a typical Mediterranean environment (NE Spain). By analysing observed climate and fire data from 1970 to 2007, we estimate the response of fire number (NF) and burned area (BA) to climate trends, disentangling the drivers responsible for long-term and interannual changes by means of a parsimonious Multi Linear Regression model (MLR). In the last forty years, the observed NF trend was negative. Here we show that, if improvements in fire management were not taken into account, the warming climate forcing alone would have led to a positive trend in NF. On the other hand, for BA, higher fuel flammability is counterbalanced by the indirect climate effects on fuel structure (i.e. less favourable conditions for fine-fuel availability and fuel connectivity), leading to a slightly negative trend. Driving the fire model with A1B climate change scenarios based on a set of Regional Climate Models from the ENSEMBLES project indicates that increasing temperatures promote a positive trend in NF if no further improvements in fire management are introduced. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Marco Turco & Maria-Carmen Llasat & Jost Hardenberg & Antonello Provenzale, 2014. "Climate change impacts on wildfires in a Mediterranean environment," Climatic Change, Springer, vol. 125(3), pages 369-380, August.
  • Handle: RePEc:spr:climat:v:125:y:2014:i:3:p:369-380
    DOI: 10.1007/s10584-014-1183-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-014-1183-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-014-1183-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meg A Krawchuk & Max A Moritz & Marc-André Parisien & Jeff Van Dorn & Katharine Hayhoe, 2009. "Global Pyrogeography: the Current and Future Distribution of Wildfire," PLOS ONE, Public Library of Science, vol. 4(4), pages 1-12, April.
    2. J. Bedia & S. Herrera & D. Martín & N. Koutsias & J. Gutiérrez, 2013. "Robust projections of Fire Weather Index in the Mediterranean using statistical downscaling," Climatic Change, Springer, vol. 120(1), pages 229-247, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thibaut Fréjaville & Thomas Curt, 2015. "Spatiotemporal patterns of changes in fire regime and climate: defining the pyroclimates of south-eastern France (Mediterranean Basin)," Climatic Change, Springer, vol. 129(1), pages 239-251, March.
    2. Jaime Martínez-Valderrama & María E. Sanjuán & Gabriel del Barrio & Emilio Guirado & Alberto Ruiz & Fernando T. Maestre, 2021. "Mediterranean Landscape Re-Greening at the Expense of South American Agricultural Expansion," Land, MDPI, vol. 10(2), pages 1-15, February.
    3. Matthew R. Sloggy & Jordan F. Suter & Mani Rouhi Rad & Dale T. Manning & Chris Goemans, 2021. "Changing opinions on a changing climate: the effects of natural disasters on public perceptions of climate change," Climatic Change, Springer, vol. 168(3), pages 1-26, October.
    4. Vassiliki Kotroni & Constantinos Cartalis & Silas Michaelides & Julia Stoyanova & Fillipos Tymvios & Antonis Bezes & Theodoros Christoudias & Stavros Dafis & Christos Giannakopoulos & Theodore M. Gian, 2020. "DISARM Early Warning System for Wildfires in the Eastern Mediterranean," Sustainability, MDPI, vol. 12(16), pages 1-30, August.
    5. Bruno A. Aparício & João A. Santos & Teresa R. Freitas & Ana C. L. Sá & José M. C. Pereira & Paulo M. Fernandes, 2022. "Unravelling the effect of climate change on fire danger and fire behaviour in the Transboundary Biosphere Reserve of Meseta Ibérica (Portugal-Spain)," Climatic Change, Springer, vol. 173(1), pages 1-20, July.
    6. Olga M. Lozano & Michele Salis & Alan A. Ager & Bachisio Arca & Fermin J. Alcasena & Antonio T. Monteiro & Mark A. Finney & Liliana Del Giudice & Enrico Scoccimarro & Donatella Spano, 2017. "Assessing Climate Change Impacts on Wildfire Exposure in Mediterranean Areas," Risk Analysis, John Wiley & Sons, vol. 37(10), pages 1898-1916, October.
    7. Hatice Oncel Cekim & Coşkun Okan Güney & Özdemir Şentürk & Gamze Özel & Kürşad Özkan, 2021. "A novel approach for predicting burned forest area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 2187-2201, January.
    8. Gabriele Vissio & Marco Turco & Antonello Provenzale, 2023. "Testing drought indicators for summer burned area prediction in Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 1125-1137, March.
    9. Jaime Martínez-Valderrama & Javier Ibáñez Puerta, 2023. "System Dynamics Tools to Study Mediterranean Rangeland’s Sustainability," Land, MDPI, vol. 12(1), pages 1-25, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandra D Syphard & Timothy Sheehan & Heather Rustigian-Romsos & Kenneth Ferschweiler, 2018. "Mapping future fire probability under climate change: Does vegetation matter?," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-23, August.
    2. Kim, Yeon-Su & Rodrigues, Marcos & Robinne, François-Nicolas, 2021. "Economic drivers of global fire activity: A critical review using the DPSIR framework," Forest Policy and Economics, Elsevier, vol. 131(C).
    3. Marion Lestienne & Boris Vannière & Thomas Curt & Isabelle Jouffroy-Bapicot & Christelle Hély, 2022. "Climate-driven Mediterranean fire hazard assessments for 2020–2100 on the light of past millennial variability," Climatic Change, Springer, vol. 170(1), pages 1-18, January.
    4. Michael C. Stambaugh & Richard P. Guyette & Esther D. Stroh & Matthew A. Struckhoff & Joanna B. Whittier, 2018. "Future southcentral US wildfire probability due to climate change," Climatic Change, Springer, vol. 147(3), pages 617-631, April.
    5. Van Butsic & Maggi Kelly & Max A. Moritz, 2015. "Land Use and Wildfire: A Review of Local Interactions and Teleconnections," Land, MDPI, vol. 4(1), pages 1-17, February.
    6. Hilsenroth, Jana & Grogan, Kelly A. & Crandall, Raelene M. & Bond, Ludie & Sharp, Misti, 2023. "Non-industrial private forest owners' preferences for fuel reduction cost-share programs in the southeastern U.S," Forest Policy and Economics, Elsevier, vol. 155(C).
    7. E. Stavros & John Abatzoglou & Donald McKenzie & Narasimhan Larkin, 2014. "Regional projections of the likelihood of very large wildland fires under a changing climate in the contiguous Western United States," Climatic Change, Springer, vol. 126(3), pages 455-468, October.
    8. Martín Senande-Rivera & Damián Insua-Costa & Gonzalo Miguez-Macho, 2022. "Spatial and temporal expansion of global wildland fire activity in response to climate change," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Erica A H Smithwick & Kusum J Naithani & Teri C Balser & William H Romme & Monica G Turner, 2012. "Post-Fire Spatial Patterns of Soil Nitrogen Mineralization and Microbial Abundance," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-9, November.
    10. Hamish Clarke & Andrew J. Pitman & Jatin Kala & Claire Carouge & Vanessa Haverd & Jason P. Evans, 2016. "An investigation of future fuel load and fire weather in Australia," Climatic Change, Springer, vol. 139(3), pages 591-605, December.
    11. Gabriele Vissio & Marco Turco & Antonello Provenzale, 2023. "Testing drought indicators for summer burned area prediction in Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 1125-1137, March.
    12. Thibaut Fréjaville & Thomas Curt, 2015. "Spatiotemporal patterns of changes in fire regime and climate: defining the pyroclimates of south-eastern France (Mediterranean Basin)," Climatic Change, Springer, vol. 129(1), pages 239-251, March.
    13. Xianli Wang & Dan Thompson & Ginny Marshall & Cordy Tymstra & Richard Carr & Mike Flannigan, 2015. "Increasing frequency of extreme fire weather in Canada with climate change," Climatic Change, Springer, vol. 130(4), pages 573-586, June.
    14. B. Hewitson & J. Daron & R. Crane & M. Zermoglio & C. Jack, 2014. "Interrogating empirical-statistical downscaling," Climatic Change, Springer, vol. 122(4), pages 539-554, February.
    15. Cardil, Adrián & Monedero, Santiago & Silva, Carlos Alberto & Ramirez, Joaquín, 2019. "Adjusting the rate of spread of fire simulations in real-time," Ecological Modelling, Elsevier, vol. 395(C), pages 39-44.
    16. Pezzatti, Gianni B. & Zumbrunnen, Thomas & Bürgi, Matthias & Ambrosetti, Paolo & Conedera, Marco, 2013. "Fire regime shifts as a consequence of fire policy and socio-economic development: An analysis based on the change point approach," Forest Policy and Economics, Elsevier, vol. 29(C), pages 7-18.
    17. Andrea Duane & Marc Castellnou & Lluís Brotons, 2021. "Towards a comprehensive look at global drivers of novel extreme wildfire events," Climatic Change, Springer, vol. 165(3), pages 1-21, April.
    18. A. Casanueva & M. Frías & S. Herrera & D. San-Martín & K. Zaninovic & J. Gutiérrez, 2014. "Statistical downscaling of climate impact indices: testing the direct approach," Climatic Change, Springer, vol. 127(3), pages 547-560, December.
    19. Jaime Martínez-Valderrama & María E. Sanjuán & Gabriel del Barrio & Emilio Guirado & Alberto Ruiz & Fernando T. Maestre, 2021. "Mediterranean Landscape Re-Greening at the Expense of South American Agricultural Expansion," Land, MDPI, vol. 10(2), pages 1-15, February.
    20. A. Casanueva & J. Bedia & S. Herrera & J. Fernández & J. M. Gutiérrez, 2018. "Direct and component-wise bias correction of multi-variate climate indices: the percentile adjustment function diagnostic tool," Climatic Change, Springer, vol. 147(3), pages 411-425, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:125:y:2014:i:3:p:369-380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.