IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v163y2020i3d10.1007_s10584-020-02699-1.html
   My bibliography  Save this article

Air quality co-benefits of ratcheting up the NDCs

Author

Listed:
  • Sebastian Rauner

    (Member of the Leibniz Association)

  • Jérôme Hilaire

    (Member of the Leibniz Association
    Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH)

  • David Klein

    (Member of the Leibniz Association)

  • Jessica Strefler

    (Member of the Leibniz Association)

  • Gunnar Luderer

    (Member of the Leibniz Association)

Abstract

The current nationally determined contributions, pledged by the countries under the Paris Agreement, are far from limiting climate change to below 2 ∘C temperature increase by the end of the century. The necessary ratcheting up of climate policy is projected to come with a wide array of additional benefits, in particular a reduction of today’s 4.5 million annual premature deaths due to poor air quality. This paper therefore addresses the question how climate policy and air pollution–related health impacts interplay until 2050 by developing a comprehensive global modeling framework along the cause and effect chain of air pollution–induced social costs. We find that ratcheting up climate policy to a 2 ∘ compliant pathway results in welfare benefits through reduced air pollution that are larger than mitigation costs, even with avoided climate change damages neglected. The regional analysis demonstrates that the 2 ∘C pathway is therefore, from a social cost perspective, a “no-regret option” in the global aggregate, but in particular for China and India due to high air quality benefits, and also for developed regions due to net negative mitigation costs. Energy and resource exporting regions, on the other hand, face higher mitigation cost than benefits. Our analysis further shows that the result of higher health benefits than mitigation costs is robust across various air pollution control scenarios. However, although climate mitigation results in substantial air pollution emission reductions overall, we find significant remaining emissions in the transport and industry sectors even in a 2 ∘C world. We therefore call for further research in how to optimally exploit climate policy and air pollution control, deriving climate change mitigation pathways that maximize co-benefits.

Suggested Citation

  • Sebastian Rauner & Jérôme Hilaire & David Klein & Jessica Strefler & Gunnar Luderer, 2020. "Air quality co-benefits of ratcheting up the NDCs," Climatic Change, Springer, vol. 163(3), pages 1481-1500, December.
  • Handle: RePEc:spr:climat:v:163:y:2020:i:3:d:10.1007_s10584-020-02699-1
    DOI: 10.1007/s10584-020-02699-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-020-02699-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-020-02699-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. W. Viscusi, 2010. "The heterogeneity of the value of statistical life: Introduction and overview," Journal of Risk and Uncertainty, Springer, vol. 40(1), pages 1-13, February.
    2. Joseph E. Aldy & W. Kip Viscusi, 2007. "Age Differences in the Value of Statistical Life: Revealed Preference Evidence," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 1(2), pages 241-260, Summer.
    3. Mingwei Li & Da Zhang & Chiao-Ting Li & Kathleen M. Mulvaney & Noelle E. Selin & Valerie J. Karplus, 2018. "Air quality co-benefits of carbon pricing in China," Nature Climate Change, Nature, vol. 8(5), pages 398-403, May.
    4. Sam Heft-Neal & Jennifer Burney & Eran Bendavid & Marshall Burke, 2018. "Robust relationship between air quality and infant mortality in Africa," Nature, Nature, vol. 559(7713), pages 254-258, July.
    5. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198.
    6. J. Jason West & Steven J. Smith & Raquel A. Silva & Vaishali Naik & Yuqiang Zhang & Zachariah Adelman & Meridith M. Fry & Susan Anenberg & Larry W. Horowitz & Jean-Francois Lamarque, 2013. "Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health," Nature Climate Change, Nature, vol. 3(10), pages 885-889, October.
    7. Nico Bauer & Lavinia Baumstark & Marian Leimbach, 2012. "The REMIND-R model: the role of renewables in the low-carbon transformation—first-best vs. second-best worlds," Climatic Change, Springer, vol. 114(1), pages 145-168, September.
    8. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935.
    9. Nico Bauer & Ottmar Edenhofer & Socrates Kypreos, 2008. "Linking energy system and macroeconomic growth models," Computational Management Science, Springer, vol. 5(1), pages 95-117, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michel G. J. Elzen & Ioannis Dafnomilis & Nicklas Forsell & Panagiotis Fragkos & Kostas Fragkiadakis & Niklas Höhne & Takeshi Kuramochi & Leonardo Nascimento & Mark Roelfsema & Heleen Soest & Frank Sp, 2022. "Updated nationally determined contributions collectively raise ambition levels but need strengthening further to keep Paris goals within reach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(5), pages 1-29, June.
    2. Müller-Hansen, Finn & Lee, Yuan Ting & Callaghan, Max & Jankin, Slava & Minx, Jan C., 2022. "The German coal debate on Twitter: Reactions to a corporate policy process," Energy Policy, Elsevier, vol. 169(C).
    3. Michel G. J. Elzen & Ioannis Dafnomilis & Nicklas Forsell & Panagiotis Fragkos & Kostas Fragkiadakis & Niklas Höhne & Takeshi Kuramochi & Leonardo Nascimento & Mark Roelfsema & Heleen Soest & Frank Sp, 2022. "Updated nationally determined contributions collectively raise ambition levels but need strengthening further to keep Paris goals within reach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(6), pages 1-29, August.
    4. Steven J. Smith & Zbigniew Klimont & Laurent Drouet & Mathijs Harmsen & Gunnar Luderer & Keywan Riahi & Detlef P. Vuuren & John P. Weyant, 2020. "The Energy Modeling Forum (EMF)-30 study on short-lived climate forcers: introduction and overview," Climatic Change, Springer, vol. 163(3), pages 1399-1408, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Shuwei & Bauer, Nico & Yin, Guangzhi & Xie, Xi, 2020. "Technology learning and diffusion at the global and local scales: A modeling exercise in the REMIND model," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    2. Cao, Libin & Tang, Yiqi & Cai, Bofeng & Wu, Pengcheng & Zhang, Yansen & Zhang, Fengxue & Xin, Bo & Lv, Chen & Chen, Kai & Fang, Kai, 2021. "Was it better or worse? Simulating the environmental and health impacts of emissions trading scheme in Hubei province, China," Energy, Elsevier, vol. 217(C).
    3. Arroyo-Currás, Tabaré & Bauer, Nico & Kriegler, Elmar & Schwanitz, Valeria Jana & Luderer, Gunnar & Aboumahboub, Tino & Giannousakis, Anastasis & Hilaire, Jérôme, 2015. "Carbon leakage in a fragmented climate regime: The dynamic response of global energy markets," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 192-203.
    4. Aguilera, Roberto F., 2014. "Production costs of global conventional and unconventional petroleum," Energy Policy, Elsevier, vol. 64(C), pages 134-140.
    5. Sugiawan, Yogi & Kurniawan, Robi & Managi, Shunsuke, 2019. "Are carbon dioxide emission reductions compatible with sustainable well-being?," Applied Energy, Elsevier, vol. 242(C), pages 1-11.
    6. Ürge-Vorsatz, Diana & Kelemen, Agnes & Tirado-Herrero, Sergio & Thomas, Stefan & Thema, Johannes & Mzavanadze, Nora & Hauptstock, Dorothea & Suerkemper, Felix & Teubler, Jens & Gupta, Mukesh & Chatter, 2016. "Measuring multiple impacts of low-carbon energy options in a green economy context," Applied Energy, Elsevier, vol. 179(C), pages 1409-1426.
    7. Anne-Maree Dowd & Michelle Rodriguez & Talia Jeanneret, 2015. "Social Science Insights for the BioCCS Industry," Energies, MDPI, vol. 8(5), pages 1-19, May.
    8. Fankhauser, Samuel & Jotzo, Frank, 2017. "Economic growth and development with low-carbon energy," LSE Research Online Documents on Economics 86850, London School of Economics and Political Science, LSE Library.
    9. Tilmann Rave, 2013. "Innovation Indicators on Global Climate Change – R&D Expenditure and Patents," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 66(15), pages 34-41, August.
    10. Daniel Moran & Richard Wood, 2014. "Convergence Between The Eora, Wiod, Exiobase, And Openeu'S Consumption-Based Carbon Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 245-261, September.
    11. Lykke E. Andersen & Luis Carlos Jemio, 2016. "Decentralization and poverty reduction in Bolivia: Challenges and opportunities," Development Research Working Paper Series 01/2016, Institute for Advanced Development Studies.
    12. Chen, Han & Huang, Ye & Shen, Huizhong & Chen, Yilin & Ru, Muye & Chen, Yuanchen & Lin, Nan & Su, Shu & Zhuo, Shaojie & Zhong, Qirui & Wang, Xilong & Liu, Junfeng & Li, Bengang & Tao, Shu, 2016. "Modeling temporal variations in global residential energy consumption and pollutant emissions," Applied Energy, Elsevier, vol. 184(C), pages 820-829.
    13. Inglesi-Lotz, Roula, 2017. "Social rate of return to R&D on various energy technologies: Where should we invest more? A study of G7 countries," Energy Policy, Elsevier, vol. 101(C), pages 521-525.
    14. Tom Mikunda & Tom Kober & Heleen de Coninck & Morgan Bazilian & Hilke R�sler & Bob van der Zwaan, 2014. "Designing policy for deployment of CCS in industry," Climate Policy, Taylor & Francis Journals, vol. 14(5), pages 665-676, September.
    15. Li, Yating & Fei, Yinxin & Zhang, Xiao-Bing & Qin, Ping, 2019. "Household appliance ownership and income inequality: Evidence from micro data in China," China Economic Review, Elsevier, vol. 56(C), pages 1-1.
    16. Xiaolun Wang & Xinlin Yao, 2020. "Fueling Pro-Environmental Behaviors with Gamification Design: Identifying Key Elements in Ant Forest with the Kano Model," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    17. Florian Knobloch & Hector Pollitt & Unnada Chewpreecha & Vassilis Daioglou & Jean-Francois Mercure, 2017. "Simulating the deep decarbonisation of residential heating for limiting global warming to 1.5C," Papers 1710.11019, arXiv.org, revised May 2018.
    18. He, Gang & Victor, David G., 2017. "Experiences and lessons from China’s success in providing electricity for all," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 335-338.
    19. Jun Nakatani & Tamon Maruyama & Kosuke Fukuchi & Yuichi Moriguchi, 2015. "A Practical Approach to Screening Potential Environmental Hotspots of Different Impact Categories in Supply Chains," Sustainability, MDPI, vol. 7(9), pages 1-15, August.
    20. van der Zwaan, Bob & Kober, Tom & Calderon, Silvia & Clarke, Leon & Daenzer, Katie & Kitous, Alban & Labriet, Maryse & Lucena, André F.P. & Octaviano, Claudia & Di Sbroiavacca, Nicolas, 2016. "Energy technology roll-out for climate change mitigation: A multi-model study for Latin America," Energy Economics, Elsevier, vol. 56(C), pages 526-542.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:163:y:2020:i:3:d:10.1007_s10584-020-02699-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.