IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v159y2020i2d10.1007_s10584-019-02649-6.html
   My bibliography  Save this article

The effect of modeling choices on updating intensity-duration-frequency curves and stormwater infrastructure designs for climate change

Author

Listed:
  • Lauren M. Cook

    (Carnegie Mellon University
    Swiss Federal Institute of Aquatic Science and Technology)

  • Seth McGinnis

    (National Center for Atmospheric Research)

  • Constantine Samaras

    (Carnegie Mellon University)

Abstract

Intensity-duration-frequency (IDF) curves, commonly used in stormwater infrastructure design to represent characteristics of extreme rainfall, are gradually being updated to reflect expected changes in rainfall under climate change. The modeling choices used for updating lead to large uncertainties; however, it is unclear how much these uncertainties affect the design and cost of stormwater systems. This study investigates how the choice of spatial resolution of the regional climate model (RCM) ensemble and the spatial adjustment technique affect climate-corrected IDF curves and resulting stormwater infrastructure designs in 34 US cities for the period 2020 to 2099. In most cities, IDF values are significantly different between three spatial adjustment techniques and two RCM spatial resolutions. These differences have the potential to alter the size of stormwater systems designed using these choices and affect the results of climate impact modeling more broadly. The largest change in the engineering decision results when the design storm is selected from the upper bounds of the uncertainty distribution of the IDF curve, which changes the stormwater pipe design size by five increments in some cases, nearly doubling the cost. State and local agencies can help reduce some of this variability by setting guidelines, such as avoiding the use of the upper bound of the future uncertainty range as a design storm and instead accounting for uncertainty by tracking infrastructure performance over time and preparing for adaptation using a resilience plan.

Suggested Citation

  • Lauren M. Cook & Seth McGinnis & Constantine Samaras, 2020. "The effect of modeling choices on updating intensity-duration-frequency curves and stormwater infrastructure designs for climate change," Climatic Change, Springer, vol. 159(2), pages 289-308, March.
  • Handle: RePEc:spr:climat:v:159:y:2020:i:2:d:10.1007_s10584-019-02649-6
    DOI: 10.1007/s10584-019-02649-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-019-02649-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-019-02649-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yeowon Kim & Daniel A. Eisenberg & Emily N. Bondank & Mikhail V. Chester & Giuseppe Mascaro & B. Shane Underwood, 2017. "Fail-safe and safe-to-fail adaptation: decision-making for urban flooding under climate change," Climatic Change, Springer, vol. 145(3), pages 397-412, December.
    2. Hamarat, Caner & Kwakkel, Jan H. & Pruyt, Erik, 2013. "Adaptive Robust Design under deep uncertainty," Technological Forecasting and Social Change, Elsevier, vol. 80(3), pages 408-418.
    3. Ida Gregersen & Hjalte Sørup & Henrik Madsen & Dan Rosbjerg & Peter Mikkelsen & Karsten Arnbjerg-Nielsen, 2013. "Assessing future climatic changes of rainfall extremes at small spatio-temporal scales," Climatic Change, Springer, vol. 118(3), pages 783-797, June.
    4. A. Kay & H. Davies & V. Bell & R. Jones, 2009. "Comparison of uncertainty sources for climate change impacts: flood frequency in England," Climatic Change, Springer, vol. 92(1), pages 41-63, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuchuan Lai & Matteo Pozzi, 2024. "Sequential learning of climate change via a physical-parameter-based state-space model and Bayesian inference," Climatic Change, Springer, vol. 177(6), pages 1-22, June.
    2. Buddhi Wijesiri & Erick Bandala & An Liu & Ashantha Goonetilleke, 2020. "A Framework for Stormwater Quality Modelling under the Effects of Climate Change to Enhance Reuse," Sustainability, MDPI, vol. 12(24), pages 1-12, December.
    3. Subhra Sekhar Maity & Rajib Maity, 2022. "Changing Pattern of Intensity–Duration–Frequency Relationship of Precipitation due to Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5371-5399, November.
    4. Moulay Driss Hasnaoui & Oumaima Rami & Driss Ouazar, 2024. "Territorial Decision Support System Based on IDF Curves’ Parameters Regionalization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(3), pages 1181-1204, February.
    5. Shadi Arfa & Mohsen Nasseri & Hassan Tavakol-Davani, 2021. "Comparing the Effects of Different Daily and Sub-Daily Downscaling Approaches on the Response of Urban Stormwater Collection Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 505-533, January.
    6. Raúl Montes-Pajuelo & Ángel M. Rodríguez-Pérez & Raúl López & César A. Rodríguez, 2024. "Analysis of Probability Distributions for Modelling Extreme Rainfall Events and Detecting Climate Change: Insights from Mathematical and Statistical Methods," Mathematics, MDPI, vol. 12(7), pages 1-24, April.
    7. Jonathan B. Butcher & Tan Zi & Brian R. Pickard & Scott C. Job & Thomas E. Johnson & Bryan A. Groza, 2021. "Efficient statistical approach to develop intensity-duration-frequency curves for precipitation and runoff under future climate," Climatic Change, Springer, vol. 164(1), pages 1-20, January.
    8. Andrés Fortunato & Helmut Herwartz & Ramón E. López & Eugenio Figueroa B., 2022. "Carbon dioxide atmospheric concentration and hydrometeorological disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 57-74, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rei Itsukushima & Yohei Ogahara & Yuki Iwanaga & Tatsuro Sato, 2018. "Investigating the Influence of Various Stormwater Runoff Control Facilities on Runoff Control Efficiency in a Small Catchment Area," Sustainability, MDPI, vol. 10(2), pages 1-12, February.
    2. Li-Chi Chiang & Indrajeet Chaubey & Nien-Ming Hong & Yu-Pin Lin & Tao Huang, 2012. "Implementation of BMP Strategies for Adaptation to Climate Change and Land Use Change in a Pasture-Dominated Watershed," IJERPH, MDPI, vol. 9(10), pages 1-31, October.
    3. Nima Fayaz & Laura E. Condon & David G. Chandler, 2020. "Evaluating the Sensitivity of Projected Reservoir Reliability to the Choice of Climate Projection: A Case Study of Bull Run Watershed, Portland, Oregon," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 1991-2009, April.
    4. Simon Gosling & Glenn McGregor & Jason Lowe, 2012. "The benefits of quantifying climate model uncertainty in climate change impacts assessment: an example with heat-related mortality change estimates," Climatic Change, Springer, vol. 112(2), pages 217-231, May.
    5. Patrick Willems, 2013. "Multidecadal oscillatory behaviour of rainfall extremes in Europe," Climatic Change, Springer, vol. 120(4), pages 931-944, October.
    6. Elizabeth Gibson & Tugrul Daim & Edwin Garces & Marina Dabic, 2018. "Technology Foresight: A Bibliometric Analysis to Identify Leading and Emerging Methods," Foresight and STI Governance (Foresight-Russia till No. 3/2015), National Research University Higher School of Economics, vol. 12(1), pages 6-24.
    7. Gordon Aitken & Lindsay Beevers & Simon Parry & Katie Facer-Childs, 2023. "Partitioning model uncertainty in multi-model ensemble river flow projections," Climatic Change, Springer, vol. 176(11), pages 1-28, November.
    8. Erik Pruyt & Jan H. Kwakkel, 2014. "Radicalization under deep uncertainty: a multi-model exploration of activism, extremism, and terrorism," System Dynamics Review, System Dynamics Society, vol. 30(1-2), pages 1-28, January.
    9. Indira Pokhrel & Ajay Kalra & Md Mafuzur Rahaman & Ranjeet Thakali, 2020. "Forecasting of Future Flooding and Risk Assessment under CMIP6 Climate Projection in Neuse River, North Carolina," Forecasting, MDPI, vol. 2(3), pages 1-23, August.
    10. Jan H. Kwakkel & Erik Pruyt, 2015. "Using System Dynamics for Grand Challenges: The ESDMA Approach," Systems Research and Behavioral Science, Wiley Blackwell, vol. 32(3), pages 358-375, May.
    11. Bleda, Mercedes & Krupnik, Seweryn, 2024. "Risks of policy failure in direct R&D support," Technological Forecasting and Social Change, Elsevier, vol. 209(C).
    12. Julie Rozenberg & Céline Guivarch & Robert Lempert & Stéphane Hallegatte, 2014. "Building SSPs for climate policy analysis: a scenario elicitation methodology to map the space of possible future challenges to mitigation and adaptation," Climatic Change, Springer, vol. 122(3), pages 509-522, February.
    13. Auping, Willem L. & Pruyt, Erik & de Jong, Sijbren & Kwakkel, Jan H., 2016. "The geopolitical impact of the shale revolution: Exploring consequences on energy prices and rentier states," Energy Policy, Elsevier, vol. 98(C), pages 390-399.
    14. Viola, Flavio M. & Paiva, Susana L.D. & Savi, Marcelo A., 2010. "Analysis of the global warming dynamics from temperature time series," Ecological Modelling, Elsevier, vol. 221(16), pages 1964-1978.
    15. Carolina Natel Moura & Sílvio Luís Rafaeli Neto & Claudia Guimarães Camargo Campos & Eder Alexandre Schatz Sá, 2020. "Hydrological Impacts of Climate Change in a Well-preserved Upland Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2255-2267, June.
    16. Alam, Gazi Mahabubul & Parvin, Morsheda, 2021. "Can online higher education be an active agent for change? —comparison of academic success and job-readiness before and during COVID-19," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    17. Jaewon Jung & Sungeun Jung & Junhyeong Lee & Myungjin Lee & Hung Soo Kim, 2021. "Analysis of Small Hydropower Generation Potential: (2) Future Prospect of the Potential under Climate Change," Energies, MDPI, vol. 14(11), pages 1-26, May.
    18. Yi Yang & Jianping Tang, 2023. "Downscaling and uncertainty analysis of future concurrent long-duration dry and hot events in China," Climatic Change, Springer, vol. 176(2), pages 1-25, February.
    19. Tobias Vetter & Julia Reinhardt & Martina Flörke & Ann Griensven & Fred Hattermann & Shaochun Huang & Hagen Koch & Ilias G. Pechlivanidis & Stefan Plötner & Ousmane Seidou & Buda Su & R. Willem Vervoo, 2017. "Evaluation of sources of uncertainty in projected hydrological changes under climate change in 12 large-scale river basins," Climatic Change, Springer, vol. 141(3), pages 419-433, April.
    20. Luciano Raso & Jan Kwakkel & Jos Timmermans, 2019. "Assessing the Capacity of Adaptive Policy Pathways to Adapt on Time by Mapping Trigger Values to Their Outcomes," Sustainability, MDPI, vol. 11(6), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:159:y:2020:i:2:d:10.1007_s10584-019-02649-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.