IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i6p3463-d521179.html
   My bibliography  Save this article

Innovations in Best Practices: Approaches to Managing Urban Areas and Reducing Flood Risk in Reggio Calabria (Italy)

Author

Listed:
  • Giuseppe Barbaro

    (DICEAM Department, Mediterranea University of Reggio Calabria, 89122 Reggio Calabria, Italy)

  • Marcelo Gomes Miguez

    (Urban Engineering Pro-gram—PEU, COPPE and Polythecnic School, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
    Environmental Engineering Program—PEA, Polythecnic School, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
    Civil Engineering Program—PEC, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil)

  • Matheus Martins de Sousa

    (Environmental Engineering Program—PEA, Polythecnic School, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil)

  • Anna Beatriz Ribeiro da Cruz Franco

    (Civil Engineering Program—PEC, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil)

  • Paula Morais Canedo de Magalhães

    (Civil Engineering Program—PEC, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil)

  • Giandomenico Foti

    (DICEAM Department, Mediterranea University of Reggio Calabria, 89122 Reggio Calabria, Italy)

  • Matheus Rocha Valadão

    (Civil Engineering Department, School of Civil Engineering, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil)

  • Irene Occhiuto

    (DICEAM Department, Mediterranea University of Reggio Calabria, 89122 Reggio Calabria, Italy)

Abstract

Urbanization increases imperviousness and reduces infiltration, retention, and evapotranspiration, frequently aggravating urban flooding due to greater runoff and higher and faster discharge peaks. Effective strategies to mitigate flood risks require a better understanding of the watershed dynamics and space to reverse the negative impacts. However, often cities do not have proper data sets to feed mathematical models that would be helpful in mapping water dynamics. Attempts to reduce flood risks have been made for decades by means of structural interventions but were frequently designed within the logic of a local scale, using limited available spaces and often merely shifting flooding downstream. Therefore, assessing urban floods requires a modeling approach capable of reflecting the watershed scale, considering interactions between hydraulic structures and urban landscape, where best practices and non-structural measures aim to improve community flood resilience through the reduction of social and financial costs in the long run. This paper proposes an integrated approach to analyze low impact development (LID) practices complemented by non-structural measures in a case study in southern Italy, supported by mathematical modeling in a strategy to overcome a context of almost no available data and limited urban open spaces.

Suggested Citation

  • Giuseppe Barbaro & Marcelo Gomes Miguez & Matheus Martins de Sousa & Anna Beatriz Ribeiro da Cruz Franco & Paula Morais Canedo de Magalhães & Giandomenico Foti & Matheus Rocha Valadão & Irene Occhiuto, 2021. "Innovations in Best Practices: Approaches to Managing Urban Areas and Reducing Flood Risk in Reggio Calabria (Italy)," Sustainability, MDPI, vol. 13(6), pages 1-22, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3463-:d:521179
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/6/3463/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/6/3463/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Johanna Nalau & John Handmer, 2018. "Improving Development Outcomes and Reducing Disaster Risk through Planned Community Relocation," Sustainability, MDPI, vol. 10(10), pages 1-14, October.
    2. Francesca Pirlone & Ilenia Spadaro & Selena Candia, 2020. "More Resilient Cities to Face Higher Risks. The Case of Genoa," Sustainability, MDPI, vol. 12(12), pages 1-21, June.
    3. Pappalardo, Viviana & La Rosa, Daniele & Campisano, Alberto & La Greca, Paolo, 2017. "The potential of green infrastructure application in urban runoff control for land use planning: A preliminary evaluation from a southern Italy case study," Ecosystem Services, Elsevier, vol. 26(PB), pages 345-354.
    4. Yeowon Kim & Daniel A. Eisenberg & Emily N. Bondank & Mikhail V. Chester & Giuseppe Mascaro & B. Shane Underwood, 2017. "Fail-safe and safe-to-fail adaptation: decision-making for urban flooding under climate change," Climatic Change, Springer, vol. 145(3), pages 397-412, December.
    5. Marcelo Gomes Miguez & Aline Pires Veról & Matheus Martins De Sousa & Osvaldo Moura Rezende, 2015. "Urban Floods in Lowlands—Levee Systems, Unplanned Urban Growth and River Restoration Alternative: A Case Study in Brazil," Sustainability, MDPI, vol. 7(8), pages 1-30, August.
    6. Cheol Hee Son & Kyoung Hak Hyun & Donghyun Kim & Jong In Baek & Yong Un Ban, 2017. "Development and Application of a Low Impact Development (LID)-Based District Unit Planning Model," Sustainability, MDPI, vol. 9(1), pages 1-18, January.
    7. Aline Pires Veról & Ianic Bigate Lourenço & João Paulo Rebechi Fraga & Bruna Peres Battemarco & Mylenna Linares Merlo & Paulo Canedo de Magalhães & Marcelo Gomes Miguez, 2020. "River Restoration Integrated with Sustainable Urban Water Management for Resilient Cities," Sustainability, MDPI, vol. 12(11), pages 1-36, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Danielle De Castro & Amy Kim, 2021. "Adaptive or Absent: A Critical Review of Building System Resilience in the LEED Rating System," Sustainability, MDPI, vol. 13(12), pages 1-10, June.
    2. Yuanyuan Yang & Wenhui Zhang & Zhe Liu & Dengfeng Liu & Qiang Huang & Jun Xia, 2023. "Coupling a Distributed Time Variant Gain Model into a Storm Water Management Model to Simulate Runoffs in a Sponge City," Sustainability, MDPI, vol. 15(4), pages 1-13, February.
    3. Yu Chen & Jacopo Gaspari, 2023. "Exploring an Integrated System for Urban Stormwater Management: A Systematic Literature Review of Solutions at Building and District Scales," Sustainability, MDPI, vol. 15(13), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rei Itsukushima & Yohei Ogahara & Yuki Iwanaga & Tatsuro Sato, 2018. "Investigating the Influence of Various Stormwater Runoff Control Facilities on Runoff Control Efficiency in a Small Catchment Area," Sustainability, MDPI, vol. 10(2), pages 1-12, February.
    2. Andreea Orîndaru & Mihaela Constantinescu & Claudia-Elena Țuclea & Ștefan-Claudiu Căescu & Margareta Stela Florescu & Ionel Dumitru, 2020. "Rurbanization—Making the City Greener: Young Citizen Implication and Future Actions," Sustainability, MDPI, vol. 12(17), pages 1-20, September.
    3. Berglihn, Elisabeth Cornelia & Gómez-Baggethun, Erik, 2021. "Ecosystem services from urban forests: The case of Oslomarka, Norway," Ecosystem Services, Elsevier, vol. 51(C).
    4. Thomas Thaler, 2021. "Just retreat—how different countries deal with it: examples from Austria and England," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 11(3), pages 412-419, September.
    5. Elisa Lähde & Ambika Khadka & Outi Tahvonen & Teemu Kokkonen, 2019. "Can We Really Have It All?—Designing Multifunctionality with Sustainable Urban Drainage System Elements," Sustainability, MDPI, vol. 11(7), pages 1-20, March.
    6. Cheol Hee Son & Yong Un Ban, 2022. "Flood vulnerability characteristics considering environmental justice and urban disaster prevention plan in Seoul, Korea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3185-3204, December.
    7. Giulio Senes & Paolo Stefano Ferrario & Gianpaolo Cirone & Natalia Fumagalli & Paolo Frattini & Giovanna Sacchi & Giorgio Valè, 2021. "Nature-Based Solutions for Storm Water Management—Creation of a Green Infrastructure Suitability Map as a Tool for Land-Use Planning at the Municipal Level in the Province of Monza-Brianza (Italy)," Sustainability, MDPI, vol. 13(11), pages 1-18, May.
    8. Riccardo Privitera & Daniele La Rosa, 2018. "Reducing Seismic Vulnerability and Energy Demand of Cities through Green Infrastructure," Sustainability, MDPI, vol. 10(8), pages 1-21, July.
    9. Alessa Jasmin Truedinger & Ali Jamshed & Holger Sauter & Joern Birkmann, 2023. "Adaptation after Extreme Flooding Events: Moving or Staying? The Case of the Ahr Valley in Germany," Sustainability, MDPI, vol. 15(2), pages 1-27, January.
    10. Pramod K. Singh & Konstantinos Papageorgiou & Harpalsinh Chudasama & Elpiniki I. Papageorgiou, 2019. "Evaluating the Effectiveness of Climate Change Adaptations in the World’s Largest Mangrove Ecosystem," Sustainability, MDPI, vol. 11(23), pages 1-17, November.
    11. Hyun Woo Kim & Tho Tran, 2018. "An Evaluation of Local Comprehensive Plans Toward Sustainable Green Infrastructure in US," Sustainability, MDPI, vol. 10(11), pages 1-21, November.
    12. Lauren M. Cook & Seth McGinnis & Constantine Samaras, 2020. "The effect of modeling choices on updating intensity-duration-frequency curves and stormwater infrastructure designs for climate change," Climatic Change, Springer, vol. 159(2), pages 289-308, March.
    13. Stefano Salata & Koray Velibeyoğlu & Alper Baba & Nicel Saygın & Virginia Thompson Couch & Taygun Uzelli, 2022. "Adapting Cities to Pluvial Flooding: The Case of Izmir (Türkiye)," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    14. Seung Kyum Kim & Paul Joosse & Mia M. Bennett & Terry Gevelt, 2020. "Impacts of green infrastructure on flood risk perceptions in Hong Kong," Climatic Change, Springer, vol. 162(4), pages 2277-2299, October.
    15. Carlos Rey-Mahía & Luis A. Sañudo-Fontaneda & Valerio C. Andrés-Valeri & Felipe Pedro Álvarez-Rabanal & Stephen John Coupe & Jorge Roces-García, 2019. "Evaluating the Thermal Performance of Wet Swales Housing Ground Source Heat Pump Elements through Laboratory Modelling," Sustainability, MDPI, vol. 11(11), pages 1-13, June.
    16. Javier Guerrero & Taufiqul Alam & Ahmed Mahmoud & Kim D. Jones & Andrew Ernest, 2020. "Decision-Support System for LID Footprint Planning and Urban Runoff Mitigation in the Lower Rio Grande Valley of South Texas," Sustainability, MDPI, vol. 12(8), pages 1-18, April.
    17. Leydy Alejandra Castellanos & Pierre-Antoine Versini & Olivier Bonin & Ioulia Tchiguirinskaia, 2020. "A Text-Mining Approach to Compare Impacts and Benefits of Nature-Based Solutions in Europe," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    18. Maragno, Denis & Gaglio, Mattias & Robbi, Martina & Appiotti, Federica & Fano, Elisa Anna & Gissi, Elena, 2018. "Fine-scale analysis of urban flooding reduction from green infrastructure: An ecosystem services approach for the management of water flows," Ecological Modelling, Elsevier, vol. 386(C), pages 1-10.
    19. Fan Yang & Suwen Xiong & Jiangang Ou & Ziyu Zhao & Ting Lei, 2022. "Human Settlement Resilience Zoning and Optimizing Strategies for River-Network Cities under Flood Risk Management Objectives: Taking Yueyang City as an Example," Sustainability, MDPI, vol. 14(15), pages 1-22, August.
    20. Mariana L. R. Goncalves & Jonatan Zischg & Sven Rau & Markus Sitzmann & Wolfgang Rauch & Manfred Kleidorfer, 2018. "Modeling the Effects of Introducing Low Impact Development in a Tropical City: A Case Study from Joinville, Brazil," Sustainability, MDPI, vol. 10(3), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3463-:d:521179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.