IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i11p6124-d564803.html
   My bibliography  Save this article

Nature-Based Solutions for Storm Water Management—Creation of a Green Infrastructure Suitability Map as a Tool for Land-Use Planning at the Municipal Level in the Province of Monza-Brianza (Italy)

Author

Listed:
  • Giulio Senes

    (Department of Agricultural and Environmental Sciences, University of Milano, 20133 Milan, Italy)

  • Paolo Stefano Ferrario

    (Department of Agricultural and Environmental Sciences, University of Milano, 20133 Milan, Italy)

  • Gianpaolo Cirone

    (Department of Agricultural and Environmental Sciences, University of Milano, 20133 Milan, Italy)

  • Natalia Fumagalli

    (Department of Agricultural and Environmental Sciences, University of Milano, 20133 Milan, Italy)

  • Paolo Frattini

    (Department of Earth and Environmental Sciences, University of Milano Bicocca, 20126 Milan, Italy)

  • Giovanna Sacchi

    (Studio Geologia Sacchi, 24121 Bergamo, Italy)

  • Giorgio Valè

    (BrianzAcque s.r.l, 20900 Monza, Italy)

Abstract

Growing and uncontrolled urbanization and climate change (with an associated increase in the frequency of intense meteoric events) have led to a rising number of flooding events in urban areas due to the insufficient capacity of conventional drainage systems. Nature-Based Solutions represent a contribution to addressing these problems through the creation of a multifunctional green infrastructure, both in urban areas and in the countryside. The aim of this work was to develop a methodology to define Green Infrastructure for stormwater management at the municipal level. The methodology is defined on the basis of three phases: the definition of the territorial information needed, the production of base maps, and the production of a Suitability Map. In the first phase, we define the information needed for the identification of non-urbanized areas where rainwater can potentially infiltrate, as well as areas with soil characteristics that can exclude or limit rainwater infiltration. In the second phase, we constructed the following base maps: a “map of green areas”, a “map of natural surface infiltration potential” and a “map of exclusion areas”. In phase 3, starting from the base maps created in phase 2 and using Geographical Information Systems’ (GIS) geoprocessing procedures, the “Green area compatibility map to realize Green Infrastructure”, the “map of areas not suitable for infiltration” and the final “Green Infrastructure Suitability Map” are created. This methodology should help municipal authorities to set up Green Infrastructure Suitability Maps as a tool for land-use planning.

Suggested Citation

  • Giulio Senes & Paolo Stefano Ferrario & Gianpaolo Cirone & Natalia Fumagalli & Paolo Frattini & Giovanna Sacchi & Giorgio Valè, 2021. "Nature-Based Solutions for Storm Water Management—Creation of a Green Infrastructure Suitability Map as a Tool for Land-Use Planning at the Municipal Level in the Province of Monza-Brianza (Italy)," Sustainability, MDPI, vol. 13(11), pages 1-18, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:6124-:d:564803
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/11/6124/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/11/6124/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pappalardo, Viviana & La Rosa, Daniele & Campisano, Alberto & La Greca, Paolo, 2017. "The potential of green infrastructure application in urban runoff control for land use planning: A preliminary evaluation from a southern Italy case study," Ecosystem Services, Elsevier, vol. 26(PB), pages 345-354.
    2. Elisa Lähde & Ambika Khadka & Outi Tahvonen & Teemu Kokkonen, 2019. "Can We Really Have It All?—Designing Multifunctionality with Sustainable Urban Drainage System Elements," Sustainability, MDPI, vol. 11(7), pages 1-20, March.
    3. Xinhao Wang & William Shuster & Chandrima Pal & Steven Buchberger & James Bonta & Kiran Avadhanula, 2010. "Low Impact Development Design—Integrating Suitability Analysis and Site Planning for Reduction of Post-Development Stormwater Quantity," Sustainability, MDPI, vol. 2(8), pages 1-16, August.
    4. Tone M. Muthanna & Edvard Sivertsen & Dennis Kliewer & Lensa Jotta, 2018. "Coupling Field Observations and Geographical Information System (GIS)-Based Analysis for Improved Sustainable Urban Drainage Systems (SUDS) Performance," Sustainability, MDPI, vol. 10(12), pages 1-13, December.
    5. Danielle Dagenais & Isabelle Thomas & Sylvain Paquette, 2017. "Siting green stormwater infrastructure in a neighbourhood to maximise secondary benefits: lessons learned from a pilot project," Landscape Research, Taylor & Francis Journals, vol. 42(2), pages 195-210, February.
    6. Susanne Charlesworth & Frank Warwick & Craig Lashford, 2016. "Decision-Making and Sustainable Drainage: Design and Scale," Sustainability, MDPI, vol. 8(8), pages 1-11, August.
    7. Bonnie L. Keeler & Perrine Hamel & Timon McPhearson & Maike H. Hamann & Marie L. Donahue & Kelly A. Meza Prado & Katie K. Arkema & Gregory N. Bratman & Kate A. Brauman & Jacques C. Finlay & Anne D. Gu, 2019. "Social-ecological and technological factors moderate the value of urban nature," Nature Sustainability, Nature, vol. 2(1), pages 29-38, January.
    8. Zachary Christman & Mahbubur Meenar & Lynn Mandarano & Kyle Hearing, 2018. "Prioritizing Suitable Locations for Green Stormwater Infrastructure Based on Social Factors in Philadelphia," Land, MDPI, vol. 7(4), pages 1-17, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Leone & Laura Grassini & Pasquale Balena, 2022. "Urban Planning and Sustainable Storm Water Management: Gaps and Potential for Integration for Climate Adaptation Strategies," Sustainability, MDPI, vol. 14(24), pages 1-15, December.
    2. Pietro De Marinis & Paolo Stefano Ferrario & Guido Sali & Giulio Senes, 2022. "The Rapid and Participatory Assessment of Land Suitability in Development Cooperation," Sustainability, MDPI, vol. 14(20), pages 1-24, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Nóblega Carriquiry & David Sauri & Hug March, 2020. "Community Involvement in the Implementation of Sustainable Urban Drainage Systems (SUDSs): The Case of Bon Pastor, Barcelona," Sustainability, MDPI, vol. 12(2), pages 1-19, January.
    2. Mahbubur Meenar & Jordan P. Howell & Devon Moulton & Shane Walsh, 2020. "Green Stormwater Infrastructure Planning in Urban Landscapes: Understanding Context, Appearance, Meaning, and Perception," Land, MDPI, vol. 9(12), pages 1-20, December.
    3. Mahbubur Meenar & Megan Heckert & Deepti Adlakha, 2022. "“Green Enough Ain’t Good Enough:” Public Perceptions and Emotions Related to Green Infrastructure in Environmental Justice Communities," IJERPH, MDPI, vol. 19(3), pages 1-17, January.
    4. Babí Almenar, Javier & Elliot, Thomas & Rugani, Benedetto & Philippe, Bodénan & Navarrete Gutierrez, Tomas & Sonnemann, Guido & Geneletti, Davide, 2021. "Nexus between nature-based solutions, ecosystem services and urban challenges," Land Use Policy, Elsevier, vol. 100(C).
    5. Thomas Meixner & Alan R. Berkowitz & Alisen E. Downey & Jose Pillich & Reese LeVea & Brianne K. Smith & Mark Chandler & Neha Gupta & Stan Rullman & Anna Woodroof & Jennifer Cherrier, 2021. "Rapid Assessment and Long-Term Monitoring of Green Stormwater Infrastructure with Citizen Scientists," Sustainability, MDPI, vol. 13(22), pages 1-21, November.
    6. Sara Lucía Jiménez Ariza & José Alejandro Martínez & Andrés Felipe Muñoz & Juan Pablo Quijano & Juan Pablo Rodríguez & Luis Alejandro Camacho & Mario Díaz-Granados, 2019. "A Multicriteria Planning Framework to Locate and Select Sustainable Urban Drainage Systems (SUDS) in Consolidated Urban Areas," Sustainability, MDPI, vol. 11(8), pages 1-33, April.
    7. Srijana Shrestha & Khem Narayan Poudyal & Nawraj Bhattarai & Mohan B. Dangi & John J. Boland, 2022. "An Assessment of the Impact of Land Use and Land Cover Change on the Degradation of Ecosystem Service Values in Kathmandu Valley Using Remote Sensing and GIS," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    8. Rei Itsukushima & Yohei Ogahara & Yuki Iwanaga & Tatsuro Sato, 2018. "Investigating the Influence of Various Stormwater Runoff Control Facilities on Runoff Control Efficiency in a Small Catchment Area," Sustainability, MDPI, vol. 10(2), pages 1-12, February.
    9. Veerkamp, Clara J. & Schipper, Aafke M. & Hedlund, Katarina & Lazarova, Tanya & Nordin, Amanda & Hanson, Helena I., 2021. "A review of studies assessing ecosystem services provided by urban green and blue infrastructure," Ecosystem Services, Elsevier, vol. 52(C).
    10. Richard Smardon, 2020. "Thomas Panagopoulos. Landscape urbanism and green infrastructure," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 10(2), pages 208-209, June.
    11. Elisabeth A. Shrimpton & Dexter Hunt & Chris D.F. Rogers, 2021. "Justice in (English) Water Infrastructure: A Systematic Review," Sustainability, MDPI, vol. 13(6), pages 1-18, March.
    12. Berglihn, Elisabeth Cornelia & Gómez-Baggethun, Erik, 2021. "Ecosystem services from urban forests: The case of Oslomarka, Norway," Ecosystem Services, Elsevier, vol. 51(C).
    13. Giulia Giacchè & Jean-Noël Consalès & Baptiste J-P. Grard & Anne-Cécile Daniel & Claire Chenu, 2021. "Toward an Evaluation of Cultural Ecosystem Services Delivered by Urban Micro-Farms," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    14. Karen T. Lourdes & Chris N. Gibbins & Perrine Hamel & Ruzana Sanusi & Badrul Azhar & Alex M. Lechner, 2021. "A Review of Urban Ecosystem Services Research in Southeast Asia," Land, MDPI, vol. 10(1), pages 1-21, January.
    15. Zhang Jingchao & Koji Kotani & Tatsuyoshi Saijo, 2021. "Are societies becoming proself? A topographical difference under fast urbanization in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 12976-12993, September.
    16. Hengyu Pan & Yong Geng & Ji Han & Cheng Huang & Wenyi Han & Zhuang Miao, 2020. "Emergy Based Decoupling Analysis of Ecosystem Services on Urbanization: A Case of Shanghai, China," Energies, MDPI, vol. 13(22), pages 1-25, November.
    17. Elisa Lähde & Ambika Khadka & Outi Tahvonen & Teemu Kokkonen, 2019. "Can We Really Have It All?—Designing Multifunctionality with Sustainable Urban Drainage System Elements," Sustainability, MDPI, vol. 11(7), pages 1-20, March.
    18. Bridget Thodesen & Berit Time & Tore Kvande, 2022. "Sustainable Urban Drainage Systems: Themes of Public Perception—A Case Study," Land, MDPI, vol. 11(4), pages 1-19, April.
    19. Jaung, Wanggi, 2022. "Digital forest recreation in the metaverse: Opportunities and challenges," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    20. Chabba, Meenakshi & Bhat, Mahadev G. & Sarmiento, Juan Pablo, 2022. "Risk-based benefit-cost analysis of ecosystem-based disaster risk reduction with considerations of co-benefits, equity, and sustainability," Ecological Economics, Elsevier, vol. 198(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:6124-:d:564803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.