IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i4p3804-d1073819.html
   My bibliography  Save this article

Coupling a Distributed Time Variant Gain Model into a Storm Water Management Model to Simulate Runoffs in a Sponge City

Author

Listed:
  • Yuanyuan Yang

    (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China)

  • Wenhui Zhang

    (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China)

  • Zhe Liu

    (PowerChina Guiyang Engineering Corporation Limited, Guiyang 550081, China)

  • Dengfeng Liu

    (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China)

  • Qiang Huang

    (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China)

  • Jun Xia

    (State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China)

Abstract

The storm water management model (SWMM) has been used extensively to plan, implement, control, and evaluate low impact development facilities and other drainage systems to solve storm-related problems in sponge cities. However, the calibration of SWMM involves a variety of sensitive parameters and may bring significant uncertainties. Here we incorporated the distributed time variant gain model (DTVGM), a model with a simple structure and few parameters, into the SWMM (called DTVGM-SWMM) to reduce the complexity but keep the mechanistic representation of the hydrological process. The DTVGM runoff module parameters were calibrated and validated using the Nash–Sutcliffe efficiency (NSE), based on measured data and the results of SWMM. It was then coupled with the SWMM routing module to estimate catchment runoffs and outflows. Finally, the performance was evaluated using NSE (0.57~0.94), relative errors of the flow depth (−7.59~19.79%), and peak flow rate (−33.68~54.37%) under different storm events. These implied that the DTVGM-SWMM simulations were generally consistent with those of the control group, but underperformed in simulating peak flows. Overall, the proposed framework could reasonably estimate the runoff, especially the outflow process in the urban catchment. This study provides a simple and reliable method for urban stormwater simulation.

Suggested Citation

  • Yuanyuan Yang & Wenhui Zhang & Zhe Liu & Dengfeng Liu & Qiang Huang & Jun Xia, 2023. "Coupling a Distributed Time Variant Gain Model into a Storm Water Management Model to Simulate Runoffs in a Sponge City," Sustainability, MDPI, vol. 15(4), pages 1-13, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3804-:d:1073819
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/4/3804/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/4/3804/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fariba Zakizadeh & Alireza Moghaddam Nia & Ali Salajegheh & Luis Angel Sañudo-Fontaneda & Nasrin Alamdari, 2022. "Efficient Urban Runoff Quantity and Quality Modelling Using SWMM Model and Field Data in an Urban Watershed of Tehran Metropolis," Sustainability, MDPI, vol. 14(3), pages 1-17, January.
    2. Yiqing Dai & Jiwang Jiang & Xingyu Gu & Yanjing Zhao & Fujian Ni, 2020. "Sustainable Urban Street Comprising Permeable Pavement and Bioretention Facilities: A Practice," Sustainability, MDPI, vol. 12(19), pages 1-14, October.
    3. Giuseppe Barbaro & Marcelo Gomes Miguez & Matheus Martins de Sousa & Anna Beatriz Ribeiro da Cruz Franco & Paula Morais Canedo de Magalhães & Giandomenico Foti & Matheus Rocha Valadão & Irene Occhiuto, 2021. "Innovations in Best Practices: Approaches to Managing Urban Areas and Reducing Flood Risk in Reggio Calabria (Italy)," Sustainability, MDPI, vol. 13(6), pages 1-22, March.
    4. Daniel Mora-Melià & Carlos S. López-Aburto & Pablo Ballesteros-Pérez & Pedro Muñoz-Velasco, 2018. "Viability of Green Roofs as a Flood Mitigation Element in the Central Region of Chile," Sustainability, MDPI, vol. 10(4), pages 1-19, April.
    5. Tian Bai & Audrey L. Mayer & William D. Shuster & Guohang Tian, 2018. "The Hydrologic Role of Urban Green Space in Mitigating Flooding (Luohe, China)," Sustainability, MDPI, vol. 10(10), pages 1-13, October.
    6. Fabian Quichimbo-Miguitama & David Matamoros & Leticia Jiménez & Pablo Quichimbo-Miguitama, 2022. "Influence of Low-Impact Development in Flood Control: A Case Study of the Febres Cordero Stormwater System of Guayaquil (Ecuador)," Sustainability, MDPI, vol. 14(12), pages 1-18, June.
    7. Chi Zhang & Yuntao Wang & Yu Li & Wei Ding, 2017. "Vulnerability Analysis of Urban Drainage Systems: Tree vs. Loop Networks," Sustainability, MDPI, vol. 9(3), pages 1-18, March.
    8. Beibei Liu & Chaowei Xu & Jiashuai Yang & Sen Lin & Xi Wang, 2022. "Effect of Land Use and Drainage System Changes on Urban Flood Spatial Distribution in Handan City: A Case Study," Sustainability, MDPI, vol. 14(21), pages 1-18, November.
    9. Wentao Li & Hao Wang & Jinjun Zhou & Lin Yan & Zilong Liu & Yali Pang & Haijia Zhang & Tianyi Huang, 2022. "Simulation and Evaluation of Rainwater Runoff Control, Collection, and Utilization for Sponge City Reconstruction in an Urban Residential Community," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    10. Janine Brandão de Farias Mesquita & Iran Eduardo Lima Neto, 2022. "Coupling Hydrological and Hydrodynamic Models for Assessing the Impact of Water Pollution on Lake Evaporation," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    11. Sangho Lee & Taeuk Kang & Dongkyun Sun & Jong-Jip Park, 2020. "Enhancing an Analysis Method of Compound Flooding in Coastal Areas by Linking Flow Simulation Models of Coasts and Watershed," Sustainability, MDPI, vol. 12(16), pages 1-20, August.
    12. Mariana L. R. Goncalves & Jonatan Zischg & Sven Rau & Markus Sitzmann & Wolfgang Rauch & Manfred Kleidorfer, 2018. "Modeling the Effects of Introducing Low Impact Development in a Tropical City: A Case Study from Joinville, Brazil," Sustainability, MDPI, vol. 10(3), pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bartosz Szeląg & Agnieszka Cienciała & Szymon Sobura & Jan Studziński & Juan T. García, 2019. "Urbanization and Management of the Catchment Retention in the Aspect of Operation of Storm Overflow: A Probabilistic Approach," Sustainability, MDPI, vol. 11(13), pages 1-17, July.
    2. Haixing Liu & Yuntao Wang & Chi Zhang & Albert S. Chen & Guangtao Fu, 2018. "Assessing real options in urban surface water flood risk management under climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 1-18, October.
    3. Danielle De Castro & Amy Kim, 2021. "Adaptive or Absent: A Critical Review of Building System Resilience in the LEED Rating System," Sustainability, MDPI, vol. 13(12), pages 1-10, June.
    4. Shuangqing Yan & Yang Zheng & Jinbao Chen & Yousong Shi, 2022. "Hydraulic Oscillation Analysis of the Hydropower Station with an Equivalent Circuit-Based Hydraulic Impedance Scheme," Sustainability, MDPI, vol. 14(18), pages 1-16, September.
    5. Bayarmaa Enkhbold & Kenichi Matsui, 2021. "Community Perceptions about Participating in Urban Park Establishment in Ulaanbaatar City, Mongolia," Land, MDPI, vol. 10(11), pages 1-12, November.
    6. Dongwei Qiu & Hao Xu & Dean Luo & Qing Ye & Shaofu Li & Tong Wang & Keliang Ding, 2020. "A rainwater control optimization design approach for airports based on a self-organizing feature map neural network model," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-23, January.
    7. Chi-Feng Chen & Jhe-Wei Lin & Jen-Yang Lin, 2022. "Hydrological Cycle Performance at a Permeable Pavement Site and a Raingarden Site in a Subtropical Region," Land, MDPI, vol. 11(6), pages 1-16, June.
    8. Arunima Sarkar Basu & Francesco Pilla & Srikanta Sannigrahi & Rémi Gengembre & Antoine Guilland & Bidroha Basu, 2021. "Theoretical Framework to Assess Green Roof Performance in Mitigating Urban Flooding as a Potential Nature-Based Solution," Sustainability, MDPI, vol. 13(23), pages 1-34, November.
    9. Wenbin Luo & Mingming Su, 2018. "A Spatial-Temporal Analysis of Urban Parkland Expansion in China and Practical Implications to Enhance Urban Sustainability," Sustainability, MDPI, vol. 11(1), pages 1-14, December.
    10. Peihao Song & Jianhui Guo & Enkai Xu & Audrey L. Mayer & Chang Liu & Jing Huang & Guohang Tian & Gunwoo Kim, 2020. "Hydrological Effects of Urban Green Space on Stormwater Runoff Reduction in Luohe, China," Sustainability, MDPI, vol. 12(16), pages 1-20, August.
    11. Wojciech Korbel & Filip Suchoń & Marta Łapuszek, 2021. "Water Dams of the Krakow Fortress: Potential of a Vanishing Heritage," Land, MDPI, vol. 10(11), pages 1-20, November.
    12. Dikman Maheng & Assela Pathirana & Chris Zevenbergen, 2021. "A Preliminary Study on the Impact of Landscape Pattern Changes Due to Urbanization: Case Study of Jakarta, Indonesia," Land, MDPI, vol. 10(2), pages 1-26, February.
    13. Syeda Maria Zaidi & Jacqueline Isabella Anak Gisen & Mohamed Eltahan & Qian Yu & Syarifuddin Misbari & Su Kong Ngien, 2022. "Assessment of Weather Research and Forecasting (WRF) Physical Schemes Parameterization to Predict Moderate to Extreme Rainfall in Poorly Gauged Basin," Sustainability, MDPI, vol. 14(19), pages 1-41, October.
    14. Yu Chen & Jacopo Gaspari, 2023. "Exploring an Integrated System for Urban Stormwater Management: A Systematic Literature Review of Solutions at Building and District Scales," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    15. Peng Wang & Hong-Rui Wei & Xi-Yin Liu & Rui-Bo Ren & Li-Zhi Wang, 2021. "Identifying the Long-Term Thermal Storage Stability of SBS-Polymer-Modified Asphalt, including Physical Indexes, Rheological Properties, and Micro-Structures Characteristics," Sustainability, MDPI, vol. 13(19), pages 1-16, September.
    16. Priscila Barros Ramalho Alves & Iana Alexandra Alves Rufino & Patrícia Hermínio Cunha Feitosa & Slobodan Djordjević & Akbar Javadi, 2020. "Land-Use and Legislation-Based Methodology for the Implementation of Sustainable Drainage Systems in the Semi-Arid Region of Brazil," Sustainability, MDPI, vol. 12(2), pages 1-23, January.
    17. Irena Niedźwiecka-Filipiak & Justyna Rubaszek & Jerzy Potyrała & Paweł Filipiak, 2019. "The Method of Planning Green Infrastructure System with the Use of Landscape-Functional Units (Method LaFU) and its Implementation in the Wrocław Functional Area (Poland)," Sustainability, MDPI, vol. 11(2), pages 1-23, January.
    18. Mitali Yeshwant Joshi & Jacques Teller, 2021. "Urban Integration of Green Roofs: Current Challenges and Perspectives," Sustainability, MDPI, vol. 13(22), pages 1-33, November.
    19. Chaohui Zhang & Mingyu He & Yishan Zhang, 2019. "Urban Sustainable Development Based on the Framework of Sponge City: 71 Case Studies in China," Sustainability, MDPI, vol. 11(6), pages 1-21, March.
    20. Caisu Meng & Hailiang Jin, 2023. "A Comparison of Machine Learning Models for Predicting Flood Susceptibility Based on the Enhanced NHAND Method," Sustainability, MDPI, vol. 15(20), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3804-:d:1073819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.