IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v154y2019i3d10.1007_s10584-019-02459-w.html
   My bibliography  Save this article

Heat stress vulnerability and risk at the (super) local scale in six Brazilian capitals

Author

Listed:
  • David M. Lapola

    (University of Campinas)

  • Diego R. Braga

    (University of Campinas)

  • Gabriela M. Di Giulio

    (University of Sao Paulo)

  • Roger R. Torres

    (Federal University of Itajubá)

  • Maria P. Vasconcellos

    (University of Sao Paulo)

Abstract

Brazilian cities host 86% of the country’s population and have been more intensely hit by rising temperatures than the average of cities across the world over the last century. Nevertheless, assessments of the vulnerability of Brazilian urban dwellers to urban heat islands (UHI) are scarce. In this study, we take advantage of the availability of high-resolution data to calculate the heat stress vulnerability and risk indexes (HSVI and HSRI, respectively) for people inhabiting six Brazilian metropolitan areas—Manaus, Natal, Vitória, São Paulo, Curitiba, and Porto Alegre. The indexes are calculated by mathematically relating indicators of exposure (distribution of >65-year-old elderly people), sensitivity/adaptive capacity (human development index, HDI), and hazard (surface temperature). The resulting HSVI maps reflect the socioeconomic (HDI) differences found among the studied cities, with the most vulnerable people located in the poorest neighborhoods in Manaus (0.720) and Natal (0.733), distributed among lower- and mid-class zones in São Paulo (0.794) and Vitória (0.772), or invariably located in the wealthy zones of Curitiba (0.783) and Porto Alegre (0.762). Two distinct patterns are identified for the HSRI: in São Paulo, Vitória, Curitiba, and Porto Alegre, high and very high risks are found in the wealthy zones of the cities, whereas in Natal and Manaus, high and very high risks are encountered in the poorly developed city zones, a result that was strongly driven by the UHI pattern. Better communication of heat stress risk and the improvement of city greenness should be the focus of near-term adaptation strategies for the mapped vulnerable population.

Suggested Citation

  • David M. Lapola & Diego R. Braga & Gabriela M. Di Giulio & Roger R. Torres & Maria P. Vasconcellos, 2019. "Heat stress vulnerability and risk at the (super) local scale in six Brazilian capitals," Climatic Change, Springer, vol. 154(3), pages 477-492, June.
  • Handle: RePEc:spr:climat:v:154:y:2019:i:3:d:10.1007_s10584-019-02459-w
    DOI: 10.1007/s10584-019-02459-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-019-02459-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-019-02459-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. E. Scott Krayenhoff & Mohamed Moustaoui & Ashley M. Broadbent & Vishesh Gupta & Matei Georgescu, 2018. "Diurnal interaction between urban expansion, climate change and adaptation in US cities," Nature Climate Change, Nature, vol. 8(12), pages 1097-1103, December.
    2. Roger Torres & David Lapola & Jose Marengo & Magda Lombardo, 2012. "Socio-climatic hotspots in Brazil," Climatic Change, Springer, vol. 115(3), pages 597-609, December.
    3. Harlan, Sharon L. & Brazel, Anthony J. & Prashad, Lela & Stefanov, William L. & Larsen, Larissa, 2006. "Neighborhood microclimates and vulnerability to heat stress," Social Science & Medicine, Elsevier, vol. 63(11), pages 2847-2863, December.
    4. Maria Carmen Lemos & Christine J. Kirchhoff & Vijay Ramprasad, 2012. "Narrowing the climate information usability gap," Nature Climate Change, Nature, vol. 2(11), pages 789-794, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Denis Maragno & Michele Dalla Fontana & Francesco Musco, 2020. "Mapping Heat Stress Vulnerability and Risk Assessment at the Neighborhood Scale to Drive Urban Adaptation Planning," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    2. Marina Ziliotto & José Artur Bogo Chies & Joel Henrique Ellwanger, 2024. "Environmental Sanitation in Porto Alegre City, Brazil: A Basic Step towards Sustainable Development," Sustainability, MDPI, vol. 16(7), pages 1-12, March.
    3. Meen Wook Jung & Mônica A Haddad & Brian K Gelder, 2024. "Examining heat inequity in a Brazilian metropolitan region," Environment and Planning B, , vol. 51(1), pages 109-127, January.
    4. Dechao Chen & Xinliang Xu & Zongyao Sun & Luo Liu & Zhi Qiao & Tai Huang, 2019. "Assessment of Urban Heat Risk in Mountain Environments: A Case Study of Chongqing Metropolitan Area, China," Sustainability, MDPI, vol. 12(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eduardo Alves Neder & Fabiano Araújo Moreira & Michele Dalla Fontana & Roger Rodrigues Torres & David Montenegro Lapola & Maria da Penha Costa Vasconcellos & Ana Maria Barbieri Bedran-Martins & Arlind, 2021. "Urban adaptation index: assessing cities readiness to deal with climate change," Climatic Change, Springer, vol. 166(1), pages 1-20, May.
    2. Emanuele Massaro & Rossano Schifanella & Matteo Piccardo & Luca Caporaso & Hannes Taubenböck & Alessandro Cescatti & Gregory Duveiller, 2023. "Spatially-optimized urban greening for reduction of population exposure to land surface temperature extremes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Xueke Li & Amanda H. Lynch, 2023. "New insights into projected Arctic sea road: operational risks, economic values, and policy implications," Climatic Change, Springer, vol. 176(4), pages 1-16, April.
    4. Chris Knudson & Zack Guido, 2019. "The missing middle of climate services: layering multiway, two-way, and one-way modes of communicating seasonal climate forecasts," Climatic Change, Springer, vol. 157(1), pages 171-187, November.
    5. Ojha, Hemant & Regmi, Udeep & Shrestha, Krishna K. & Paudel, Naya Sharma & Amatya, Swoyambhu Man & Zwi, Anthony B. & Nuberg, Ian & Cedamon, Edwin & Banjade, Mani R., 2020. "Improving science-policy interface: Lessons from the policy lab methodology in Nepal's community forest governance," Forest Policy and Economics, Elsevier, vol. 114(C).
    6. Susan Williams & Peng Bi & Jonathan Newbury & Guy Robinson & Dino Pisaniello & Arthur Saniotis & Alana Hansen, 2013. "Extreme Heat and Health: Perspectives from Health Service Providers in Rural and Remote Communities in South Australia," IJERPH, MDPI, vol. 10(11), pages 1-19, October.
    7. Weihua Dong & Zhao Liu & Lijie Zhang & Qiuhong Tang & Hua Liao & Xian'en Li, 2014. "Assessing Heat Health Risk for Sustainability in Beijing’s Urban Heat Island," Sustainability, MDPI, vol. 6(10), pages 1-24, October.
    8. Sara Wilkinson & Renato Castiglia Feitosa, 2015. "Retrofitting Housing with Lightweight Green Roof Technology in Sydney, Australia, and Rio de Janeiro, Brazil," Sustainability, MDPI, vol. 7(1), pages 1-18, January.
    9. De Valck, Jeremy & Beames, Alistair & Liekens, Inge & Bettens, Maarten & Seuntjens, Piet & Broekx, Steven, 2019. "Valuing urban ecosystem services in sustainable brownfield redevelopment," Ecosystem Services, Elsevier, vol. 35(C), pages 139-149.
    10. Tao Chen & Anchang Sun & Ruiqing Niu, 2019. "Effect of Land Cover Fractions on Changes in Surface Urban Heat Islands Using Landsat Time-Series Images," IJERPH, MDPI, vol. 16(6), pages 1-18, March.
    11. Gillian L. Galford & Julie Nash & Alan K. Betts & Sam Carlson & Sarah Ford & Ann Hoogenboom & Deborah Markowitz & Andrew Nash & Elizabeth Palchak & Sarah Pears & Kristen L. Underwood, 2016. "Bridging the climate information gap: a framework for engaging knowledge brokers and decision makers in state climate assessments," Climatic Change, Springer, vol. 138(3), pages 383-395, October.
    12. Kevin Raaphorst & Gerben Koers & Gerald Jan Ellen & Amy Oen & Bjørn Kalsnes & Lisa van Well & Jana Koerth & Rutger van der Brugge, 2020. "Mind the Gap: Towards a Typology of Climate Service Usability Gaps," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    13. Vaneckova, Pavla & Beggs, Paul J. & Jacobson, Carol R., 2010. "Spatial analysis of heat-related mortality among the elderly between 1993 and 2004 in Sydney, Australia," Social Science & Medicine, Elsevier, vol. 70(2), pages 293-304, January.
    14. Maria Papathoma-Koehle & Catrin Promper & Roxana Bojariu & Roxana Cica & András Sik & Kinga Perge & Peter László & Erika Balázs Czikora & Alexandru Dumitrescu & Cosmin Turcus & Marius-Victor Birsan & , 2016. "A common methodology for risk assessment and mapping for south-east Europe: an application for heat wave risk in Romania," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 89-109, May.
    15. Qunshan Zhao & Elizabeth A. Wentz, 2016. "A MODIS/ASTER Airborne Simulator (MASTER) Imagery for Urban Heat Island Research," Data, MDPI, vol. 1(1), pages 1-9, June.
    16. Svenja Keele, 2019. "Consultants and the business of climate services: implications of shifting from public to private science," Climatic Change, Springer, vol. 157(1), pages 9-26, November.
    17. Zack Guido & Sara Lopus & Kurt Waldman & Corrie Hannah & Andrew Zimmer & Natasha Krell & Chris Knudson & Lyndon Estes & Kelly Caylor & Tom Evans, 2021. "Perceived links between climate change and weather forecast accuracy: new barriers to tools for agricultural decision-making," Climatic Change, Springer, vol. 168(1), pages 1-20, September.
    18. Richard H. Moss, 2016. "Assessing decision support systems and levels of confidence to narrow the climate information “usability gap”," Climatic Change, Springer, vol. 135(1), pages 143-155, March.
    19. Yuan-Bin Cai & Ke Li & Yan-Hong Chen & Lei Wu & Wen-Bin Pan, 2021. "The Changes of Heat Contribution Index in Urban Thermal Environment: A Case Study in Fuzhou," Sustainability, MDPI, vol. 13(17), pages 1-18, August.
    20. Weihua Dong & Zhao Liu & Hua Liao & Qiuhong Tang & Xian’en Li, 2015. "New climate and socio-economic scenarios for assessing global human health challenges due to heat risk," Climatic Change, Springer, vol. 130(4), pages 505-518, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:154:y:2019:i:3:d:10.1007_s10584-019-02459-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.