IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i8p3747-d1639095.html
   My bibliography  Save this article

A Systematic Review of Methodological Advances in Urban Heatwave Risk Assessment: Integrating Multi-Source Data and Hybrid Weighting Methods

Author

Listed:
  • Chang Xu

    (College of Architecture and Urban Planning, Shandong Jianzhu University, Jinan 250101, China)

  • Ruihan Wei

    (College of Architecture and Urban Planning, Shandong Jianzhu University, Jinan 250101, China)

  • Hui Tong

    (College of Architecture and Urban Planning, Shandong Jianzhu University, Jinan 250101, China)

Abstract

As climate change intensifies, urban populations face growing threats from frequent and severe heatwaves, underscoring the urgent need for advanced risk assessment frameworks to inform adaptation strategies. This systematic review synthesizes methodological innovations in urban heatwave risk assessment (2007–2024), analyzing 259 studies through bibliometric analysis (CiteSpace 6.4.R1) and multi-criteria evaluation. We propose the hazard–exposure–vulnerability–adaptability (HEVA) framework, an extension of Crichton’s risk triangle that integrates dynamic adaptability metrics and supports high-resolution spatial analysis for urban heatwave risk assessment. Our systematic review reveals three key methodological gaps: (1) Inconsistent indicator selection across studies; (2) limited analysis of microclimatic variations; (3) sparse integration of IoT- or satellite-based monitoring. The study offers practical solutions for enhancing assessment accuracy, including refined weighting methodologies and high-resolution spatial analysis techniques. We conclude by proposing a research agenda that prioritizes interdisciplinary approaches—bridging urban planning, climate science, and public health—while advocating for policy tools that address spatial inequities in heat risk exposure. These insights advance the development of more precise, actionable assessment systems to support climate-resilient urban development.

Suggested Citation

  • Chang Xu & Ruihan Wei & Hui Tong, 2025. "A Systematic Review of Methodological Advances in Urban Heatwave Risk Assessment: Integrating Multi-Source Data and Hybrid Weighting Methods," Sustainability, MDPI, vol. 17(8), pages 1-21, April.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:8:p:3747-:d:1639095
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/8/3747/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/8/3747/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Valéry Masson & Colette Marchadier & Luc Adolphe & Rahim Aguejdad & P. Avner & Marc Bonhomme & Geneviève Bretagne & X. Briottet & Bruno Bueno & Cécile de Munck & O. Doukari & Stéphane Hallegatte & Jul, 2014. "Adapting cities to climate change: A systemic modelling approach," Post-Print hal-01136215, HAL.
    2. Li, Lei & Chi, Ting & Wang, Shi, 2016. "Is energy utilization among Chinese provinces sustainable?," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 198-206.
    3. Hajat, S. & Sheridan, S.C. & Allen, M.J. & Pascal, M. & Laaidi, K. & Yagouti, A. & Bickis, U. & Tobias, A. & Bourque, D. & Armstrong, B.G. & Kosatsky, T., 2010. "Heat-health warning systems: A comparison of the predictive capacity of different approaches to identifying dangerously hot days," American Journal of Public Health, American Public Health Association, vol. 100(6), pages 1137-1144.
    4. Gustavo J. Nagy & Walter Leal Filho & Ulisses M. Azeiteiro & Johanna Heimfarth & José E. Verocai & Chunlan Li, 2018. "An Assessment of the Relationships between Extreme Weather Events, Vulnerability, and the Impacts on Human Wellbeing in Latin America," IJERPH, MDPI, vol. 15(9), pages 1-25, August.
    5. Rakin Abrar & Showmitra Kumar Sarkar & Kashfia Tasnim Nishtha & Swapan Talukdar & Shahfahad & Atiqur Rahman & Abu Reza Md Towfiqul Islam & Amir Mosavi, 2022. "Assessing the Spatial Mapping of Heat Vulnerability under Urban Heat Island (UHI) Effect in the Dhaka Metropolitan Area," Sustainability, MDPI, vol. 14(9), pages 1-24, April.
    6. Weihua Dong & Zhao Liu & Lijie Zhang & Qiuhong Tang & Hua Liao & Xian'en Li, 2014. "Assessing Heat Health Risk for Sustainability in Beijing’s Urban Heat Island," Sustainability, MDPI, vol. 6(10), pages 1-24, October.
    7. Gulrez Azhar & Shubhayu Saha & Partha Ganguly & Dileep Mavalankar & Jaime Madrigano, 2017. "Heat Wave Vulnerability Mapping for India," IJERPH, MDPI, vol. 14(4), pages 1-10, March.
    8. Wei Zhang & Yubi Zhu & Jingang Jiang, 2016. "Effect of the Urbanization of Wetlands on Microclimate: A Case Study of Xixi Wetland, Hangzhou, China," Sustainability, MDPI, vol. 8(9), pages 1-13, September.
    9. David M. Lapola & Diego R. Braga & Gabriela M. Di Giulio & Roger R. Torres & Maria P. Vasconcellos, 2019. "Heat stress vulnerability and risk at the (super) local scale in six Brazilian capitals," Climatic Change, Springer, vol. 154(3), pages 477-492, June.
    10. Lucille Alonso & Florent Renard, 2020. "A Comparative Study of the Physiological and Socio-Economic Vulnerabilities to Heat Waves of the Population of the Metropolis of Lyon (France) in a Climate Change Context," IJERPH, MDPI, vol. 17(3), pages 1-21, February.
    11. Minxuan Zheng & Jiahua Zhang & Lamei Shi & Da Zhang & Til Prasad Pangali Sharma & Foyez Ahmed Prodhan, 2020. "Mapping Heat-Related Risks in Northern Jiangxi Province of China Based on Two Spatial Assessment Frameworks Approaches," IJERPH, MDPI, vol. 17(18), pages 1-24, September.
    12. Junzhe Bao & Xudong Li & Chuanhua Yu, 2015. "The Construction and Validation of the Heat Vulnerability Index, a Review," IJERPH, MDPI, vol. 12(7), pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Merve Kalaycı Kadak, 2025. "Towards a Climate-Resilient Metropolis: A Neighborhood-Scale Nature-Based Urban Adaptation Planning Approach," Sustainability, MDPI, vol. 17(16), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiaxing Xin & Jun Yang & Yipeng Jiang & Zhipeng Shi & Cui Jin & Xiangming Xiao & Jianhong (Cecilia) Xia & Ruxin Yang, 2023. "Variations of Urban Thermal Risk with Local Climate Zones," IJERPH, MDPI, vol. 20(4), pages 1-14, February.
    2. Wei Zhang & Phil McManus & Elizabeth Duncan, 2018. "A Raster-Based Subdividing Indicator to Map Urban Heat Vulnerability: A Case Study in Sydney, Australia," IJERPH, MDPI, vol. 15(11), pages 1-20, November.
    3. Lexyn J. Iliscupidez & Liz Dennett & Stuart Lau & Alvaro Osornio Vargas & Shelby S. Yamamoto, 2025. "Children and Climate Change Vulnerability Indices: a Scoping Review," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 18(4), pages 1467-1494, August.
    4. Fei Li & Tan Yigitcanlar & Madhav Nepal & Kien Nguyen Thanh & Fatih Dur, 2022. "Understanding Urban Heat Vulnerability Assessment Methods: A PRISMA Review," Energies, MDPI, vol. 15(19), pages 1-34, September.
    5. Minxuan Zheng & Jiahua Zhang & Lamei Shi & Da Zhang & Til Prasad Pangali Sharma & Foyez Ahmed Prodhan, 2020. "Mapping Heat-Related Risks in Northern Jiangxi Province of China Based on Two Spatial Assessment Frameworks Approaches," IJERPH, MDPI, vol. 17(18), pages 1-24, September.
    6. Wei Zhang & Qianxing Zhao & Minjie Pei, 2021. "How much uncertainty does the choice of data transforming method brings to heat risk mapping? Evidence from China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 349-373, March.
    7. You Jin Kwon & Dong Kun Lee & You Ha Kwon, 2020. "Is Sensible Heat Flux Useful for the Assessment of Thermal Vulnerability in Seoul (Korea)?," IJERPH, MDPI, vol. 17(3), pages 1-26, February.
    8. Jie Liu & Zhenwu Shi & Dan Wang, 2016. "Measuring and mapping the flood vulnerability based on land-use patterns: a case study of Beijing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1545-1565, September.
    9. Yu Zhang & Lijun Hu & Ruilei Liu, 2025. "Environmental Target Constraint and Corporate Pollution Emissions: Evidence from China," Sustainability, MDPI, vol. 17(9), pages 1-20, April.
    10. Jeong-Hee Eum & Kwon Kim & Eung-Ho Jung & Paikho Rho, 2018. "Evaluation and Utilization of Thermal Environment Associated with Policy: A Case Study of Daegu Metropolitan City in South Korea," Sustainability, MDPI, vol. 10(4), pages 1-20, April.
    11. Ghasem Toloo & Gerard FitzGerald & Peter Aitken & Kenneth Verrall & Shilu Tong, 2013. "Evaluating the effectiveness of heat warning systems: systematic review of epidemiological evidence," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 58(5), pages 667-681, October.
    12. Jinling Quan, 2019. "Multi-Temporal Effects of Urban Forms and Functions on Urban Heat Islands Based on Local Climate Zone Classification," IJERPH, MDPI, vol. 16(12), pages 1-35, June.
    13. Jesse M. Keenan, 2018. "Regional resilience trust funds: an exploratory analysis for leveraging insurance surcharges," Environment Systems and Decisions, Springer, vol. 38(1), pages 118-139, March.
    14. Kevin Raaphorst & Gerben Koers & Gerald Jan Ellen & Amy Oen & Bjørn Kalsnes & Lisa van Well & Jana Koerth & Rutger van der Brugge, 2020. "Mind the Gap: Towards a Typology of Climate Service Usability Gaps," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    15. Pinto, Jucimar Augusto & Tiago Filho, Geraldo Lúcio & Cardoso de Jesus, Ana Luisa & Barbedo, Matheus David Guimarães & Santos, Ivan Felipe Silva dos & Barros, Regina Mambeli & Silva, Fernando das Graç, 2025. "A comparative analysis of thermosolar and photovoltaic systems for meeting residential hot water demands," Renewable Energy, Elsevier, vol. 244(C).
    16. Eliza Kalbarczyk & Robert Kalbarczyk, 2020. "Typology of Climate Change Adaptation Measures in Polish Cities up to 2030," Land, MDPI, vol. 9(10), pages 1-18, September.
    17. Suresh Kumar Rathi & Soham Chakraborty & Saswat Kishore Mishra & Ambarish Dutta & Lipika Nanda, 2021. "A Heat Vulnerability Index: Spatial Patterns of Exposure, Sensitivity and Adaptive Capacity for Urbanites of Four Cities of India," IJERPH, MDPI, vol. 19(1), pages 1-17, December.
    18. Hua Liao & Celio Andrade & Julio Lumbreras & Jing Tian, 2018. "CO2 Emissions in Beijing: Sectoral Linkages and Demand Drivers," CEEP-BIT Working Papers 113, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    19. Weihua Dong & Zhao Liu & Hua Liao & Qiuhong Tang & Xian’en Li, 2015. "New climate and socio-economic scenarios for assessing global human health challenges due to heat risk," Climatic Change, Springer, vol. 130(4), pages 505-518, June.
    20. repec:plo:pone00:0180075 is not listed on IDEAS
    21. Dong-Seok Lee & Jae-Hun Jo & Sung-Han Koo & Byung-Yun Lee, 2015. "Development of Climate Indices Using Local Weather Data for Shading Design," Sustainability, MDPI, vol. 7(2), pages 1-16, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:8:p:3747-:d:1639095. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.