IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v146y2018i1d10.1007_s10584-017-2045-6.html
   My bibliography  Save this article

Fire weather and likelihood: characterizing climate space for fire occurrence and extent in Puerto Rico

Author

Listed:
  • Ashley E. Beusekom

    (International Institute of Tropical Forestry)

  • William A. Gould

    (International Institute of Tropical Forestry)

  • A. Carolina Monmany

    (CONICET-Universidad Nacional de Tucumán)

  • Azad Henareh Khalyani

    (Colorado State University)

  • Maya Quiñones

    (International Institute of Tropical Forestry)

  • Stephen J. Fain

    (International Institute of Tropical Forestry)

  • Maria José Andrade-Núñez

    (University of Puerto Rico)

  • Grizelle González

    (International Institute of Tropical Forestry)

Abstract

Assessing the relationships between weather patterns and the likelihood of fire occurrence in the Caribbean has not been as central to climate change research as in temperate regions, due in part to the smaller extent of individual fires. However, the cumulative effect of small frequent fires can shape large landscapes, and fire-prone ecosystems are abundant in the tropics. Climate change has the potential to greatly expand fire-prone areas to moist and wet tropical forests and grasslands that have been traditionally less fire-prone, and to extend and create more temporal variability in fire seasons. We built a machine learning random forest classifier to analyze the relationship between climatic, socio-economic, and fire history data with fire occurrence and extent for the years 2003–2011 in Puerto Rico, nearly 35,000 fires. Using classifiers based on climate measurements alone, we found that the climate space is a reliable associate, if not a predictor, of fire occurrence and extent in this environment. We found a strong relationship between occurrence and a change from average weather conditions, and between extent and severity of weather conditions. The probability that the random forest classifiers will rank a positive example higher than a negative example is 0.8–0.89 in the classifiers for deciding if a fire occurs, and 0.64–0.69 in the classifiers for deciding if the fire is greater than 5 ha. Future climate projections of extreme seasons indicate increased potential for fire occurrence with larger extents.

Suggested Citation

  • Ashley E. Beusekom & William A. Gould & A. Carolina Monmany & Azad Henareh Khalyani & Maya Quiñones & Stephen J. Fain & Maria José Andrade-Núñez & Grizelle González, 2018. "Fire weather and likelihood: characterizing climate space for fire occurrence and extent in Puerto Rico," Climatic Change, Springer, vol. 146(1), pages 117-131, January.
  • Handle: RePEc:spr:climat:v:146:y:2018:i:1:d:10.1007_s10584-017-2045-6
    DOI: 10.1007/s10584-017-2045-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-017-2045-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-017-2045-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rajagopal, 2014. "The Human Factors," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249, Palgrave Macmillan.
    2. Mark A. Cochrane, 2003. "Fire science for rainforests," Nature, Nature, vol. 421(6926), pages 913-919, February.
    3. Meg A Krawchuk & Max A Moritz & Marc-André Parisien & Jeff Van Dorn & Katharine Hayhoe, 2009. "Global Pyrogeography: the Current and Future Distribution of Wildfire," PLOS ONE, Public Library of Science, vol. 4(4), pages 1-12, April.
    4. Mercer, D. Evan & Prestemon, Jeffrey P., 2005. "Comparing production function models for wildfire risk analysis in the wildland-urban interface," Forest Policy and Economics, Elsevier, vol. 7(5), pages 782-795, August.
    5. Muh Taufik & Paul J. J. F. Torfs & Remko Uijlenhoet & Philip D. Jones & Daniel Murdiyarso & Henny A. J. Van Lanen, 2017. "Amplification of wildfire area burnt by hydrological drought in the humid tropics," Nature Climate Change, Nature, vol. 7(6), pages 428-431, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jared L. Wilmoth, 2021. "Redox Heterogeneity Entangles Soil and Climate Interactions," Sustainability, MDPI, vol. 13(18), pages 1-14, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Yeon-Su & Rodrigues, Marcos & Robinne, François-Nicolas, 2021. "Economic drivers of global fire activity: A critical review using the DPSIR framework," Forest Policy and Economics, Elsevier, vol. 131(C).
    2. Van Butsic & Maggi Kelly & Max A. Moritz, 2015. "Land Use and Wildfire: A Review of Local Interactions and Teleconnections," Land, MDPI, vol. 4(1), pages 1-17, February.
    3. Zhangwen Su & Lujia Zheng & Sisheng Luo & Mulualem Tigabu & Futao Guo, 2021. "Modeling wildfire drivers in Chinese tropical forest ecosystems using global logistic regression and geographically weighted logistic regression," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1317-1345, August.
    4. Martín Senande-Rivera & Damián Insua-Costa & Gonzalo Miguez-Macho, 2022. "Spatial and temporal expansion of global wildland fire activity in response to climate change," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Rahman, Shaikh Moksadur, 2020. "Relationship between Job Satisfaction and Turnover Intention: Evidence from Bangladesh," Asian Business Review, Asian Business Consortium, vol. 10(2), pages 99-108.
    6. Wang Kai, 2019. "Towards a Taxonomy of Idea Generation Techniques," Foundations of Management, Sciendo, vol. 11(1), pages 65-80, January.
    7. Bridgelall, Raj & Stubbing, Edward, 2021. "Forecasting the effects of autonomous vehicles on land use," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    8. Bevilacqua, Maurizio & Ciarapica, Filippo Emanuele, 2018. "Human factor risk management in the process industry: A case study," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 149-159.
    9. Naveena Prakasam & Louisa Huxtable-Thomas, 2021. "Reddit: Affordances as an Enabler for Shifting Loyalties," Information Systems Frontiers, Springer, vol. 23(3), pages 723-751, June.
    10. Colin Jerolmack & Alexandra K. Murphy, 2019. "The Ethical Dilemmas and Social Scientific Trade-offs of Masking in Ethnography," Sociological Methods & Research, , vol. 48(4), pages 801-827, November.
    11. Valeriy Makarov & Albert Bakhtizin, 2014. "The Estimation Of The Regions’ Efficiency Of The Russian Federation Including The Intellectual Capital, The Characteristics Of Readiness For Innovation, Level Of Well-Being, And Quality Of Life," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(4), pages 9-30.
    12. Zhao, Jing & Knoop, Victor L. & Wang, Meng, 2020. "Two-dimensional vehicular movement modelling at intersections based on optimal control," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 1-22.
    13. Kristine Edgar Danielyan & Samvel Grigoriy Chailyan, 2019. "Delineation of Effectors Impact on The Human Brain Derived Phosphoribosylpyrophosphate Synthetase-1 Activity," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 24(1), pages 17918-17926, December.
    14. Chuan Wang & Yupeng Liu & Wen Hou & Chao Yu & Guorong Wang & Yuyan Zheng, 2021. "Reliability and availability modeling of Subsea Autonomous High Integrity Pressure Protection System with partial stroke test by Dynamic Bayesian," Journal of Risk and Reliability, , vol. 235(2), pages 268-281, April.
    15. Mohammad AL-Zoubi, 2018. "The Role of Technology, Organization, and Environment Factors in Enterprise Resource Planning Implementation Success in Jordan," International Business Research, Canadian Center of Science and Education, vol. 11(8), pages 48-65, August.
    16. Damgaard, Mette Trier & Nielsen, Helena Skyt, 2018. "Nudging in education," Economics of Education Review, Elsevier, vol. 64(C), pages 313-342.
    17. Nicole D. Sintov & P. Wesley Schultz, 2017. "Adjustable Green Defaults Can Help Make Smart Homes More Sustainable," Sustainability, MDPI, vol. 9(4), pages 1-12, April.
    18. Hwang, ShinYoung & Kim Seongcheol, 2017. "What triggers the use of mIM service provider’s sequel O2O service extensions?," 14th ITS Asia-Pacific Regional Conference, Kyoto 2017: Mapping ICT into Transformation for the Next Information Society 168494, International Telecommunications Society (ITS).
    19. Sana Sadiq & Khadija Anasse & Najib Slimani, 2022. "The impact of mobile phones on high school students: connecting the research dots," Technium Social Sciences Journal, Technium Science, vol. 30(1), pages 252-270, April.
    20. Maude Hasbi & Antoine Dubus, 2019. "Determinants of Mobile Broadband Use in Developing Economies: Evidence from Sub-Saharan Africa," Working Papers hal-02264651, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:146:y:2018:i:1:d:10.1007_s10584-017-2045-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.