IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v143y2017i1d10.1007_s10584-017-1994-0.html
   My bibliography  Save this article

The Asia-Pacific’s role in the emerging solar geoengineering debate

Author

Listed:
  • Masahiro Sugiyama

    (The University of Tokyo)

  • Shinichiro Asayama

    (National Institute for Environmental Studies)

  • Atsushi Ishii

    (Tohoku University)

  • Takanobu Kosugi

    (Ritsumeikan University)

  • John C. Moore

    (Beijing Normal University
    University of Lapland)

  • Jolene Lin

    (The University of Hong Kong)

  • Penehuro F. Lefale

    (Massey University)

  • Wil Burns

    (School of International Service, American University)

  • Masatomo Fujiwara

    (Hokkaido University)

  • Arunabha Ghosh

    (Council on Energy, Environment and Water)

  • Joshua Horton

    (Harvard Kennedy School)

  • Atsushi Kurosawa

    (The Institute of Applied Energy)

  • Andy Parker

    (Institute for Advanced Sustainability Studies)

  • Michael Thompson

    (American University)

  • Pak-Hang Wong

    (Hang Seng Management College)

  • Lili Xia

    (Rutgers University)

Abstract

Increasing interest in climate engineering in recent years has led to calls by the international research community for international research collaboration as well as global public engagement. But making such collaboration a reality is challenging. Here, we report the summary of a 2016 workshop on the significance and challenges of international collaboration on climate engineering research with a focus on the Asia-Pacific region. Because of the region’s interest in benefits and risks of climate engineering, there is a potential synergy between impact research on anthropogenic global warming and that on solar radiation management. Local researchers in the region can help make progress toward better understanding of impacts of solar radiation management. These activities can be guided by an ad hoc Asia-Pacific working group on climate engineering, a voluntary expert network. The working group can foster regional conversations in a sustained manner while contributing to capacity building. An important theme in the regional conversation is to develop effective practices of dialogues in light of local backgrounds such as cultural traditions and past experiences of large-scale technology development. Our recommendation merely portrays one of several possible ways forward, and it is our hope to stimulate the debate in the region.

Suggested Citation

  • Masahiro Sugiyama & Shinichiro Asayama & Atsushi Ishii & Takanobu Kosugi & John C. Moore & Jolene Lin & Penehuro F. Lefale & Wil Burns & Masatomo Fujiwara & Arunabha Ghosh & Joshua Horton & Atsushi Ku, 2017. "The Asia-Pacific’s role in the emerging solar geoengineering debate," Climatic Change, Springer, vol. 143(1), pages 1-12, July.
  • Handle: RePEc:spr:climat:v:143:y:2017:i:1:d:10.1007_s10584-017-1994-0
    DOI: 10.1007/s10584-017-1994-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-017-1994-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-017-1994-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Pongratz & D. B. Lobell & L. Cao & K. Caldeira, 2012. "Crop yields in a geoengineered climate," Nature Climate Change, Nature, vol. 2(2), pages 101-105, February.
    2. Steve Rayner & Clare Heyward & Tim Kruger & Nick Pidgeon & Catherine Redgwell & Julian Savulescu, 2013. "The Oxford Principles," Climatic Change, Springer, vol. 121(3), pages 499-512, December.
    3. David E. Winickoff & Jane A. Flegal & Asfawossen Asrat, 2015. "Engaging the Global South on climate engineering research," Nature Climate Change, Nature, vol. 5(7), pages 627-634, July.
    4. Wylie Carr & Christopher Preston & Laurie Yung & Bronislaw Szerszynski & David Keith & Ashley Mercer, 2013. "Public engagement on solar radiation management and why it needs to happen now," Climatic Change, Springer, vol. 121(3), pages 567-577, December.
    5. Lisa Dilling & Rachel Hauser, 2013. "Governing geoengineering research: why, when and how?," Climatic Change, Springer, vol. 121(3), pages 553-565, December.
    6. Oschlies, Andreas & Klepper, Gernot, 2017. "Research for Assessment, not Deployment of Climate Engineering: The German Research Foundation's Priority Program SPP 1689," Open Access Publications from Kiel Institute for the World Economy 226373, Kiel Institute for the World Economy (IfW Kiel).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masahiro Sugiyama & Hiroshi Deguchi & Arisa Ema & Atsuo Kishimoto & Junichiro Mori & Hideaki Shiroyama & Roland W. Scholz, 2017. "Unintended Side Effects of Digital Transition: Perspectives of Japanese Experts," Sustainability, MDPI, vol. 9(12), pages 1-20, November.
    2. Laurence L. Delina, 2020. "Potentials and critiques of building a Southeast Asian interdisciplinary knowledge community on critical geoengineering studies," Climatic Change, Springer, vol. 163(2), pages 973-987, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebastian Harnisch & Stephanie Uther & Miranda Boettcher, 2015. "From ‘Go Slow’ to ‘Gung Ho’? Climate Engineering Discourses in the UK, the US, and Germany," Global Environmental Politics, MIT Press, vol. 15(2), pages 57-78, May.
    2. Wylie Carr & Christopher Preston & Laurie Yung & Bronislaw Szerszynski & David Keith & Ashley Mercer, 2013. "Public engagement on solar radiation management and why it needs to happen now," Climatic Change, Springer, vol. 121(3), pages 567-577, December.
    3. Elspeth Spence & Emily Cox & Nick Pidgeon, 2021. "Exploring cross-national public support for the use of enhanced weathering as a land-based carbon dioxide removal strategy," Climatic Change, Springer, vol. 165(1), pages 1-18, March.
    4. Anna‐Maria Hubert, 2021. "A Code of Conduct for Responsible Geoengineering Research," Global Policy, London School of Economics and Political Science, vol. 12(S1), pages 82-96, April.
    5. Zhen Dai & Elizabeth T. Burns & Peter J. Irvine & Dustin H. Tingley & Jianhua Xu & David W. Keith, 2021. "Elicitation of US and Chinese expert judgments show consistent views on solar geoengineering," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-9, December.
    6. Christine Merk & Gert Pönitzsch & Katrin Rehdanz, 2019. "Do climate engineering experts display moral-hazard behaviour?," Climate Policy, Taylor & Francis Journals, vol. 19(2), pages 231-243, February.
    7. Victoria Wibeck & Anders Hansson & Jonas Anshelm & Shinichiro Asayama & Lisa Dilling & Pamela M. Feetham & Rachel Hauser & Atsushi Ishii & Masahiro Sugiyama, 2017. "Making sense of climate engineering: a focus group study of lay publics in four countries," Climatic Change, Springer, vol. 145(1), pages 1-14, November.
    8. Judith Kreuter & Nils Matzner & Christian Baatz & David P. Keller & Till Markus & Felix Wittstock & Ulrike Bernitt & Nadine Mengis, 2020. "Unveiling assumptions through interdisciplinary scrutiny: Observations from the German Priority Program on Climate Engineering (SPP 1689)," Climatic Change, Springer, vol. 162(1), pages 57-66, September.
    9. Daniel P. Carlisle & Pamela M. Feetham & Malcolm J. Wright & Damon A. H. Teagle, 2020. "The public remain uninformed and wary of climate engineering," Climatic Change, Springer, vol. 160(2), pages 303-322, May.
    10. Seth D. Baum & Timothy M. Maher & Jacob Haqq-Misra, 2013. "Double catastrophe: intermittent stratospheric geoengineering induced by societal collapse," Environment Systems and Decisions, Springer, vol. 33(1), pages 168-180, March.
    11. Wylie A. Carr & Laurie Yung, 2018. "Perceptions of climate engineering in the South Pacific, Sub-Saharan Africa, and North American Arctic," Climatic Change, Springer, vol. 147(1), pages 119-132, March.
    12. Jesse L. Reynolds & Edward A. Parson, 2020. "Nonstate governance of solar geoengineering research," Climatic Change, Springer, vol. 160(2), pages 323-342, May.
    13. Heutel, Garth & Moreno-Cruz, Juan & Shayegh, Soheil, 2016. "Climate tipping points and solar geoengineering," Journal of Economic Behavior & Organization, Elsevier, vol. 132(PB), pages 19-45.
    14. Jane A. Flegal & Aarti Gupta, 2018. "Evoking equity as a rationale for solar geoengineering research? Scrutinizing emerging expert visions of equity," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 18(1), pages 45-61, February.
    15. Andrew J. Wiltshire & Gillian Kay & Jemma L. Gornall & Richard A. Betts, 2013. "The Impact of Climate, CO 2 and Population on Regional Food and Water Resources in the 2050s," Sustainability, MDPI, vol. 5(5), pages 1-23, May.
    16. Heutel, Garth & Moreno-Cruz, Juan & Shayegh, Soheil, 2018. "Solar geoengineering, uncertainty, and the price of carbon," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 24-41.
    17. Samaniego, Joseluis & Lorenzo, Santiago & Rondón Toro, Estefani & Krieger Merico, Luiz F. & Herrera Jiménez, Juan & Rouse, Paul & Harrison, Nicholas, 2023. "Nature-based solutions and carbon dioxide removal," Documentos de Proyectos 48691, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    18. Merk, Christine & Pönitzsch, Gert, 2016. "The role of affect in attitude formation toward new technologies: The case of stratospheric aerosol injection," Kiel Working Papers 2024, Kiel Institute for the World Economy (IfW Kiel).
    19. Lomax, Guy & Workman, Mark & Lenton, Timothy & Shah, Nilay, 2015. "Reframing the policy approach to greenhouse gas removal technologies," Energy Policy, Elsevier, vol. 78(C), pages 125-136.
    20. Manoussi, Vassiliki & Shayegh, Soheil & Tavoni, Massimo, 2017. "Optimal Carbon Dioxide Removal in Face of Ocean Carbon Sink Feedback," MITP: Mitigation, Innovation and Transformation Pathways 266288, Fondazione Eni Enrico Mattei (FEEM).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:143:y:2017:i:1:d:10.1007_s10584-017-1994-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.