IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Sustainability aspects and nutritional composition of fish: evaluation of wild and cultivated fish species consumed in the Netherlands

Listed author(s):
  • S. Marije Seves

    (National Institute for Public Health and the Environment (RIVM))

  • Elisabeth H. M. Temme

    ()

    (National Institute for Public Health and the Environment (RIVM))

  • Marinka C. C. Brosens

    (National Institute for Public Health and the Environment (RIVM))

  • Michiel C. Zijp

    (National Institute for Public Health and the Environment (RIVM))

  • Jeljer Hoekstra

    (National Institute for Public Health and the Environment (RIVM))

  • Anne Hollander

    (National Institute for Public Health and the Environment (RIVM))

Registered author(s):

    Abstract Health councils recommend higher fish consumption because of its associated health benefits. However, overfishing is considered the main threat to marine fisheries. To answer to the global fish demand, cultivated fish production continues to grow and may come with environmental concerns. This study aims to evaluate environmental sustainability and n-3 long chain (≥C20) polyunsaturated fatty acids (n-3 LC-PUFA) content of current fish consumption in the Netherlands. Fish consumption was assessed on two non-consecutive days by 24-hour recalls in the Dutch National Food Consumption Survey 2007–2010 (n = 3819, aged 7–69 yr). Fish products consumed were classified according to species and types of fishery. We evaluated greenhouse gas emissions (GHGE) and land use, calculated via life cycle assessments. Fish stocks and biodiversity were taken into account via sustainability labels. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) contents in fish were calculated based on analyses available from food composition databases and literature. The Dutch average consumption is 6–15 g fish per person per day, of mostly wild-caught fish. Large variations exist between fish species in GHGE and n-3 LC-PUFA contents, and are independent of the type of fishery. Land use is higher for cultivated fish. Cultivated salmon contains significantly more n-3 LC-PUFA and total fat than wild-caught salmon. For most species evaluated, except for mackerel and catfish, fish with a sustainability label is available. Our results suggest that herring, wild-caught and cultivated salmon with MSC/ASC logo are a reasonable choice from the combined perspective of n-3 LC-PUFA content and the selected environmental indicators.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://link.springer.com/10.1007/s10584-015-1581-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Springer in its journal Climatic Change.

    Volume (Year): 135 (2016)
    Issue (Month): 3 (April)
    Pages: 597-610

    as
    in new window

    Handle: RePEc:spr:climat:v:135:y:2016:i:3:d:10.1007_s10584-015-1581-1
    DOI: 10.1007/s10584-015-1581-1
    Contact details of provider: Web page: http://www.springer.com

    Order Information: Web: http://www.springer.com/economics/journal/10584

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as
    in new window


    1. Nijdam, Durk & Rood, Trudy & Westhoek, Henk, 2012. "The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes," Food Policy, Elsevier, vol. 37(6), pages 760-770.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:135:y:2016:i:3:d:10.1007_s10584-015-1581-1. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

    or (Rebekah McClure)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.