IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v117y2013i1p377-397.html
   My bibliography  Save this article

PM 2.5 co-benefits of climate change legislation part 1: California’s AB 32

Author

Listed:
  • Christina Zapata
  • Nicholas Muller
  • Michael Kleeman

Abstract

The Scoping Plan for compliance with California Assembly Bill 32 (Global Warming Solutions Act of 2006; AB 32) proposes a substantial reduction in 2020 greenhouse gas (GHG) emissions from all economic sectors through energy efficiency, renewable energy, and other technological measures. Most of the AB 32 Scoping Plan measures will simultaneously reduce emissions of traditional criteria pollutants along with GHGs leading to a co-benefit of improved air quality in California. The present study quantifies the airborne particulate matter (PM 2.5 ) co-benefits of AB 32 by comparing future air quality under a Business as Usual (BAU) scenario (without AB 32) to AB 32 implementation by sector. AB 32 measures were divided into five levels defined by sector as follows: 1) industrial sources, 2) electric utility and natural gas sources, 3) agricultural sources, 4) on-road mobile sources and 5) other mobile sources. Air quality throughout California was simulated using the UCD source-oriented air quality model during 12 days of severe air pollution and over 108 days of typical meteorology representing an annual average period in the year 2030 (10 years after the AB 32 adoption deadline). The net effect of all AB 32 measures reduced statewide primary PM and NO x emissions by ~1 % and ~15 %, respectively. Air quality simulations predict that these emissions reductions lower population-weighted PM 2.5 concentrations by ~6 % for California. The South Coast Air Basin (SoCAB) experienced the greatest reductions in PM 2.5 concentrations due to the AB 32 transportation measures while the San Joaquin Valley (SJV) experiences the smallest reductions or even slight increases in PM 2.5 concentrations due to the AB 32 measures that called for increased use of dairy biogas for electricity generation. The ~6 % reduction in PM 2.5 exposure associated with AB 32 predicted in the current study reduced air pollution mortality in California by 6.2 %, avoiding 880 (560–1100) premature deaths per year for the conditions in 2030. The monetary benefit from this avoided mortality was estimated at $5.4B/yr with a weighted average benefit per tonne of $35 k/tonne ($23 k/tonne–$45 k/tonne) of PM, NO x , SO x , and NH 3 emissions reduction. Copyright Springer Science+Business Media B.V. 2013

Suggested Citation

  • Christina Zapata & Nicholas Muller & Michael Kleeman, 2013. "PM 2.5 co-benefits of climate change legislation part 1: California’s AB 32," Climatic Change, Springer, vol. 117(1), pages 377-397, March.
  • Handle: RePEc:spr:climat:v:117:y:2013:i:1:p:377-397
    DOI: 10.1007/s10584-012-0545-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-012-0545-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-012-0545-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Viscusi, W Kip & Aldy, Joseph E, 2003. "The Value of a Statistical Life: A Critical Review of Market Estimates throughout the World," Journal of Risk and Uncertainty, Springer, vol. 27(1), pages 5-76, August.
    2. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    3. Anil Markandaya & Ben Armstrong & Simon Hales & Aline Chiabai & Patrick Criqui & Silvana Mima, 2009. "Impact on public health of strategies to reduce greenhouse gases : low carbon electricity generation," Post-Print halshs-00459664, HAL.
    4. Johannes Bollen & Bruno Guay & Stéphanie Jamet & Jan Corfee-Morlot, 2009. "Co-Benefits of Climate Change Mitigation Policies: Literature Review and New Results," OECD Economics Department Working Papers 693, OECD Publishing.
    5. repec:reg:rpubli:282 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiang Zhang & Jun Shan & Hai Long, 2022. "Improving Transportation Technologies for Carbon Reduction in the Chinese Provinces along the Silk Road," Energies, MDPI, vol. 15(8), pages 1-22, April.
    2. Brown, Kristen E. & Henze, Daven K. & Milford, Jana B., 2017. "How accounting for climate and health impacts of emissions could change the US energy system," Energy Policy, Elsevier, vol. 102(C), pages 396-405.
    3. Michael Kleeman & Christina Zapata & John Stilley & Mark Hixson, 2013. "PM 2.5 co-benefits of climate change legislation part 2: California governor’s executive order S-3-05 applied to the transportation sector," Climatic Change, Springer, vol. 117(1), pages 399-414, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moroni, Stefano & Antoniucci, Valentina & Bisello, Adriano, 2016. "Energy sprawl, land taking and distributed generation: towards a multi-layered density," Energy Policy, Elsevier, vol. 98(C), pages 266-273.
    2. Aalbers, Rob & Shestalova, Victoria & Kocsis, Viktória, 2013. "Innovation policy for directing technical change in the power sector," Energy Policy, Elsevier, vol. 63(C), pages 1240-1250.
    3. Bollen, Johannes, 2015. "The value of air pollution co-benefits of climate policies: Analysis with a global sector-trade CGE model called WorldScan," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 178-191.
    4. Bösch, Matthias & Elsasser, Peter & Rock, Joachim & Rüter, Sebastian & Weimar, Holger & Dieter, Matthias, 2017. "Costs and carbon sequestration potential of alternative forest management measures in Germany," Forest Policy and Economics, Elsevier, vol. 78(C), pages 88-97.
    5. Fouquet, Roger, 2011. "Long run trends in energy-related external costs," Ecological Economics, Elsevier, vol. 70(12), pages 2380-2389.
    6. Delucchi, Mark A. & McCubbin, Donald R., 2010. "External Costs of Transport in the U.S," Institute of Transportation Studies, Working Paper Series qt13n8v8gq, Institute of Transportation Studies, UC Davis.
    7. Muller, Nicholas Z., 2012. "The design of optimal climate policy with air pollution co-benefits," Resource and Energy Economics, Elsevier, vol. 34(4), pages 696-722.
    8. Stéphane Hallegatte & Jan Corfee-Morlot, 2011. "Understanding climate change impacts, vulnerability and adaptation at city scale: an introduction," Climatic Change, Springer, vol. 104(1), pages 1-12, January.
    9. Alexis Louaas & Pierre Picard, 2014. "Optimal Insurance For Catastrophic Risk: Theory And Application To Nuclear Corporate Liability," Working Papers hal-01097897, HAL.
    10. Carlo Carraro & Emanuele Massetti, 2010. "International Climate Change Negotiations: Lessons from Theory," Chapters, in: Emilio Cerdá Tena & Xavier Labandeira (ed.), Climate Change Policies, chapter 8, Edward Elgar Publishing.
    11. Patrick Criqui & Silvana Mima, 2012. "European climate -- energy security nexus: A model based scenario analysis," Post-Print halshs-00661043, HAL.
    12. Ian Rowlands, 2011. "Ancillary impacts of energy-related climate change mitigation options in Africa’s least developed countries," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 16(7), pages 749-773, October.
    13. Dietz, Simon, 2011. "High impact, low probability?: an empirical analysis of risk in the economics of climate change," LSE Research Online Documents on Economics 38586, London School of Economics and Political Science, LSE Library.
    14. Mary Evans & V. Smith, 2010. "Measuring how risk tradeoffs adjust with income," Journal of Risk and Uncertainty, Springer, vol. 40(1), pages 33-55, February.
    15. Angel Prieto, 2019. "Alliances de villes pour le climat - Modélisation par la théorie des jeux," CIRANO Working Papers 2019s-16, CIRANO.
    16. Bosetti, Valentina & Carraro, Carlo & De Cian, Enrica & Massetti, Emanuele & Tavoni, Massimo, 2013. "Incentives and stability of international climate coalitions: An integrated assessment," Energy Policy, Elsevier, vol. 55(C), pages 44-56.
    17. James Boyce & Manuel Pastor, 2012. "Cooling the Planet, Clearing the Air: Climate Policy, Carbon Pricing, and Co-Benefits," Published Studies cooling_the_planet_sept20, Political Economy Research Institute, University of Massachusetts at Amherst.
    18. Dietz, Simon, 2009. "High impact, low probability? An empirical analysis of risk in the economics of climate change," LSE Research Online Documents on Economics 37612, London School of Economics and Political Science, LSE Library.
    19. Yew-Kwang Ng, 2016. "The Importance of Global Extinction in Climate Change Policy," Global Policy, London School of Economics and Political Science, vol. 7(3), pages 315-322, September.
    20. Chanel, Olivier & Chichilnisky, Graciela, 2013. "Valuing life: Experimental evidence using sensitivity to rare events," Ecological Economics, Elsevier, vol. 85(C), pages 198-205.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:117:y:2013:i:1:p:377-397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.