IDEAS home Printed from https://ideas.repec.org/a/spr/bioerq/v5y2020i3d10.1007_s41247-020-00080-5.html
   My bibliography  Save this article

Assessing Carbon Capture: Public Policy, Science, and Societal Need

Author

Listed:
  • June Sekera

    (New School for Social Research
    Boston University
    University College London)

  • Andreas Lichtenberger

    (New School for Social Research)

Abstract

From typhoons to wildfires, as the visible impacts of climate change mount, calls for mitigation through carbon drawdown are escalating. Environmentalists and many climatologists are urging steps to enhance biological methods of carbon drawdown and sequestration. Market actors seeing avenues for profit have launched ventures in mechanical–chemical carbon dioxide removal (CDR), seeking government support for their methods. Governments are responding. Given the strong, if often unremarked, momentum of demands for public subsidy of these commercial methods, on what cogent bases can elected leaders make decisions that, first and foremost, meet societal needs? To address this question, we reviewed the scientific and technical literature on CDR, focusing on two methods that have gained most legislative traction: point-source capture and direct air capture–which together we term “industrial carbon removal” (ICR), in contrast to biological methods. We anchored our review in a standard of “collective biophysical need,” which we define as a reduction of the level of atmospheric CO2. For each ICR method, we sought to determine (1) whether it sequesters more CO2 than it emits; (2) its resource usage at scale; and (3) its biophysical impacts. We found that the commercial ICR (C-ICR) methods being incentivized by governments are net CO2 additive: CO2 emissions exceed removals. Further, the literature inadequately addresses the resource usage and biophysical impacts of these methods at climate-significant scale. We concluded that dedicated storage, not sale, of captured CO2 is the only assured way to achieve a reduction of atmospheric CO2. Governments should therefore approach atmospheric carbon reduction as a public service, like water treatment or waste disposal. We offer policy recommendations along this line and call for an analysis tool that aids legislators in applying biophysical considerations to policy choices.

Suggested Citation

  • June Sekera & Andreas Lichtenberger, 2020. "Assessing Carbon Capture: Public Policy, Science, and Societal Need," Biophysical Economics and Resource Quality, Springer, vol. 5(3), pages 1-28, September.
  • Handle: RePEc:spr:bioerq:v:5:y:2020:i:3:d:10.1007_s41247-020-00080-5
    DOI: 10.1007/s41247-020-00080-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s41247-020-00080-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s41247-020-00080-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vasudevan, Suraj & Farooq, Shamsuzzaman & Karimi, Iftekhar A. & Saeys, Mark & Quah, Michael C.G. & Agrawal, Rakesh, 2016. "Energy penalty estimates for CO2 capture: Comparison between fuel types and capture-combustion modes," Energy, Elsevier, vol. 103(C), pages 709-714.
    2. Herman E. Daly, 2007. "Ecological Economics and Sustainable Development, Selected Essays of Herman Daly," Books, Edward Elgar Publishing, number 12606.
    3. Maxime Desmarais-Tremblay, 2017. "Musgrave, Samuelson, and the Crystallization of the Standard Rationale for Public Goods," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01475760, HAL.
    4. June Sekera, 2017. "Missing from the Mainstream: The Biophysical Basis of Production and the Public Economy," GDAE Working Papers 17-02, GDAE, Tufts University.
    5. Herzog, Howard J., 2011. "Scaling up carbon dioxide capture and storage: From megatons to gigatons," Energy Economics, Elsevier, vol. 33(4), pages 597-604, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marwa Hannouf & Getachew Assefa, 2018. "A Life Cycle Sustainability Assessment-Based Decision-Analysis Framework," Sustainability, MDPI, Open Access Journal, vol. 10(11), pages 1-22, October.
    2. Massol, Olivier & Tchung-Ming, Stéphane & Banal-Estañol, Albert, 2018. "Capturing industrial CO2 emissions in Spain: Infrastructures, costs and break-even prices," Energy Policy, Elsevier, vol. 115(C), pages 545-560.
    3. Selosse, Sandrine & Ricci, Olivia & Maïzi, Nadia, 2013. "Fukushima's impact on the European power sector: The key role of CCS technologies," Energy Economics, Elsevier, vol. 39(C), pages 305-312.
    4. Lee, Suh-Young & Lee, Jae-Uk & Lee, In-Beum & Han, Jeehoon, 2017. "Design under uncertainty of carbon capture and storage infrastructure considering cost, environmental impact, and preference on risk," Applied Energy, Elsevier, vol. 189(C), pages 725-738.
    5. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, Open Access Journal, vol. 8(3), pages 1-41, March.
    6. Benjamin Court & Thomas Elliot & Joseph Dammel & Thomas Buscheck & Jeremy Rohmer & Michael Celia, 2012. "Promising synergies to address water, sequestration, legal, and public acceptance issues associated with large-scale implementation of CO 2 sequestration," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(6), pages 569-599, August.
    7. Spash, Clive L., 2014. "Better Growth, Helping the Paris COP-out? Fallacies and Omissions of the New Climate Economy Report," SRE-Discussion Papers 2014/04, WU Vienna University of Economics and Business.
    8. Nemet, Gregory F. & Zipperer, Vera & Kraus, Martina, 2018. "The valley of death, the technology pork barrel, and public support for large demonstration projects," Energy Policy, Elsevier, vol. 119(C), pages 154-167.
    9. Nemet, Gregory F. & Baker, Erin & Jenni, Karen E., 2013. "Modeling the future costs of carbon capture using experts' elicited probabilities under policy scenarios," Energy, Elsevier, vol. 56(C), pages 218-228.
    10. Walsh, D.M. & O'Sullivan, K. & Lee, W.T. & Devine, M.T., 2014. "When to invest in carbon capture and storage technology: A mathematical model," Energy Economics, Elsevier, vol. 42(C), pages 219-225.
    11. Philip Lawn (ed.), 2013. "Globalisation, Economic Transition and the Environment," Books, Edward Elgar Publishing, number 15053.
    12. Jean-Pierre Amigues & Gilles Lafforgue & Michel Moreaux, 2014. "Optimal Timing of CCS Policies with Heterogeneous Energy Consumption Sectors," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 57(3), pages 345-366, March.
    13. Luiz Fernando Rodrigues Pinto & Glória de Fátima Pereira Venturini & Salvatore Digiesi & Francesco Facchini & Geraldo Cardoso de Oliveira Neto, 2020. "Sustainability Assessment in Manufacturing under a Strong Sustainability Perspective—An Ecological Neutrality Initiative," Sustainability, MDPI, Open Access Journal, vol. 12(21), pages 1-40, November.
    14. Amigues, Jean-Pierre & Lafforgue, Gilles & Moreaux, Michel, 2014. "Optimal Timing of Carbon Capture and Storage Policies Under Learning-by-doing," IDEI Working Papers 824, Institut d'Économie Industrielle (IDEI), Toulouse, revised May 2014.
    15. Upstill, Garrett & Hall, Peter, 2018. "Estimating the learning rate of a technology with multiple variants: The case of carbon storage," Energy Policy, Elsevier, vol. 121(C), pages 498-505.
    16. Amigues, Jean-Pierre & Lafforgue, Gilles & Moreaux, Michel, 2014. "Optimal Timing of CCS Policies under Decreasing Returns to Scale," TSE Working Papers 14-529, Toulouse School of Economics (TSE).
    17. Ming, Tingzhen & de_Richter, Renaud & Liu, Wei & Caillol, Sylvain, 2014. "Fighting global warming by climate engineering: Is the Earth radiation management and the solar radiation management any option for fighting climate change?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 792-834.
    18. Amigues, Jean-Pierre & Lafforgue, Gilles & Moreaux, Michel, 2016. "Optimal timing of carbon capture policies under learning-by-doing," Journal of Environmental Economics and Management, Elsevier, vol. 78(C), pages 20-37.
    19. Claudia Cristina Sanchez Moore & Luiz Kulay, 2019. "Effect of the Implementation of Carbon Capture Systems on the Environmental, Energy and Economic Performance of the Brazilian Electricity Matrix," Energies, MDPI, Open Access Journal, vol. 12(2), pages 1-18, January.
    20. Fan, Junming & Zhu, Lin & Hong, Hui & Jiang, Qiongqiong & Jin, Hongguang, 2017. "A thermodynamic and environmental performance of in-situ gasification of chemical looping combustion for power generation using ilmenite with different coals and comparison with other coal-driven powe," Energy, Elsevier, vol. 119(C), pages 1171-1180.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:bioerq:v:5:y:2020:i:3:d:10.1007_s41247-020-00080-5. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.