IDEAS home Printed from
   My bibliography  Save this article

Integrated Modelling of the Global Cobalt Extraction, Supply, Price and Depletion of Extractable Resources Using the WORLD6 Model


  • Harald Ulrik Sverdrup

    () (University of Iceland)

  • Kristin Vala Ragnarsdottir

    (University of Iceland)

  • Deniz Koca

    (Lund University)


Abstract The global cobalt cycle in society was modelled using an integrated systems dynamics model, WORLD6, integrating several earlier system dynamics models developed by the authors. The COBALT sub-model was used to assess the long-term sufficiency of the available extractable cobalt and address the effect of different degrees of recycling on cobalt supply. The extraction of cobalt is mostly dependent on the extraction of copper, nickel and platinum group metals. The ultimately recoverable resources estimate was 32 million ton on land and 34 million ton on the ocean floors, a total of 66 million ton, significantly larger than earlier estimates. It is very uncertain how much of the cobalt, detected in ocean floor deposits, is extractable. The present use of cobalt by society is diverse and about half the total cobalt production to the market is in the form of metallic cobalt. The simulations show that cobalt extraction is predicted to reach a peak in the years 2025–2030 and that the supply will reach a peak level in 2040–2050. Three different global population scenarios were used (high, middle, low). We predict that the supply of cobalt will decline slowly with about 3–5% per year after 2050. The present use of cobalt in chemicals, colours, rechargeable batteries and super-alloys shows a low degree of recycling and the systemic losses are significant. After 2170, cobalt will have run out under business-as-usual scenario. The present business-as-usual cobalt use in society is not sustainable. Too much cobalt is lost if only market mechanisms are expected to improve recycling, and unnecessary cobalt is wasted if no policy actions are taken. Increased recycling and better conservation will be able to improve the supply situation, but this will need active policy participation beyond what market mechanisms can do alone. To conserve cobalt for coming generations, present policies must be changed within the next few decades. The sooner policies change, the better for future generations.

Suggested Citation

  • Harald Ulrik Sverdrup & Kristin Vala Ragnarsdottir & Deniz Koca, 2017. "Integrated Modelling of the Global Cobalt Extraction, Supply, Price and Depletion of Extractable Resources Using the WORLD6 Model," Biophysical Economics and Resource Quality, Springer, vol. 2(1), pages 1-29, March.
  • Handle: RePEc:spr:bioerq:v:2:y:2017:i:1:d:10.1007_s41247-017-0017-0
    DOI: 10.1007/s41247-017-0017-0

    Download full text from publisher

    File URL:
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Hoagland, Porter & Beaulieu, Stace & Tivey, Maurice A. & Eggert, Roderick G. & German, Christopher & Glowka, Lyle & Lin, Jian, 2010. "Deep-sea mining of seafloor massive sulfides," Marine Policy, Elsevier, vol. 34(3), pages 728-732, May.
    2. Harmsen, J.H.M. & Roes, A.L. & Patel, M.K., 2013. "The impact of copper scarcity on the efficiency of 2050 global renewable energy scenarios," Energy, Elsevier, vol. 50(C), pages 62-73.
    3. Phillips, W. G. B. & Edwards, D. P., 1976. "Metal prices as a function of ore grade," Resources Policy, Elsevier, vol. 2(3), pages 167-178, September.
    4. Tilton, John E. & Lagos, Gustavo, 2007. "Assessing the long-run availability of copper," Resources Policy, Elsevier, vol. 32(1-2), pages 19-23.
    5. Phillip Crowson, 2011. "Mineral reserves and future minerals availability," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 24(1), pages 1-6, July.
    6. Wagner, H. & Fettweis, G. B. L., 2001. "About science and technology in the field of mining in the Western world at the beginning of the new century," Resources Policy, Elsevier, vol. 27(3), pages 157-168, September.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Cobalt; Price; Reserves; Mining; Recycling; System dynamics;


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:bioerq:v:2:y:2017:i:1:d:10.1007_s41247-017-0017-0. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.