IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v336y2024i1d10.1007_s10479-022-04982-z.html
   My bibliography  Save this article

CBI-time-changed Lévy processes for multi-currency modeling

Author

Listed:
  • Claudio Fontana

    (University of Padova)

  • Alessandro Gnoatto

    (University of Verona)

  • Guillaume Szulda

    (University of Padova
    Université de Paris Cité)

Abstract

We develop a stochastic volatility framework for modeling multiple currencies based on CBI-time-changed Lévy processes. The proposed framework captures the typical risk characteristics of FX markets and is coherent with the symmetries of FX rates. Moreover, due to the self-exciting behavior of CBI processes, the volatilities of FX rates exhibit self-exciting dynamics. By relying on the theory of affine processes, we show that our approach is analytically tractable and that the model structure is invariant under a suitable class of risk-neutral measures. A semi-closed pricing formula for currency options is obtained by Fourier methods. We propose two calibration methods, also by relying on deep-learning techniques, and show that a simple specification of the model can achieve a good fit to market data on a currency triangle.

Suggested Citation

  • Claudio Fontana & Alessandro Gnoatto & Guillaume Szulda, 2024. "CBI-time-changed Lévy processes for multi-currency modeling," Annals of Operations Research, Springer, vol. 336(1), pages 127-152, May.
  • Handle: RePEc:spr:annopr:v:336:y:2024:i:1:d:10.1007_s10479-022-04982-z
    DOI: 10.1007/s10479-022-04982-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04982-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04982-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Albert N. Shiryaev & Jan Kallsen, 2002. "The cumulant process and Esscher's change of measure," Finance and Stochastics, Springer, vol. 6(4), pages 397-428.
    2. Federico Graceffa & Damiano Brigo & Andrea Pallavicini, 2020. "On the consistency of jump-diffusion dynamics for FX rates under inversion," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 7(04), pages 1-17, December.
    3. Baldeaux, Jan & Grasselli, Martino & Platen, Eckhard, 2015. "Pricing currency derivatives under the benchmark approach," Journal of Banking & Finance, Elsevier, vol. 53(C), pages 34-48.
    4. Paul Doust, 2012. "The Stochastic Intrinsic Currency Volatility Model: A Consistent Framework for Multiple FX Rates and Their Volatilities," Applied Mathematical Finance, Taylor & Francis Journals, vol. 19(5), pages 381-445, November.
    5. Alessandro Gnoatto, 2017. "Coherent Foreign Exchange Market Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-29, February.
    6. Ballotta, Laura & Deelstra, Griselda & Rayée, Grégory, 2017. "Multivariate FX models with jumps: Triangles, Quantos and implied correlation," European Journal of Operational Research, Elsevier, vol. 260(3), pages 1181-1199.
    7. Carr, Peter & Wu, Liuren, 2007. "Stochastic skew in currency options," Journal of Financial Economics, Elsevier, vol. 86(1), pages 213-247, October.
    8. Ying Jiao & Chunhua Ma & Simone Scotti, 2017. "Alpha-CIR model with branching processes in sovereign interest rate modeling," Finance and Stochastics, Springer, vol. 21(3), pages 789-813, July.
    9. Ernst Eberlein & Nataliya Koval, 2006. "A cross-currency Levy market model," Quantitative Finance, Taylor & Francis Journals, vol. 6(6), pages 465-480.
    10. Ying Jiao & Chunhua Ma & Simone Scotti, 2017. "Alpha-CIR Model with Branching Processes in Sovereign Interest Rate Modelling," Post-Print hal-01275397, HAL.
    11. Philip Wooldridge, 2019. "FX and OTC derivatives markets through the lens of the Triennial Survey," BIS Quarterly Review, Bank for International Settlements, December.
    12. Marcos Escobar & Christoph Gschnaidtner, 2018. "A multivariate stochastic volatility model with applications in the foreign exchange market," Review of Derivatives Research, Springer, vol. 21(1), pages 1-43, April.
    13. Ying Jiao & Chunhua Ma & Simone Scotti & Chao Zhou, 2021. "The Alpha‐Heston stochastic volatility model," Mathematical Finance, Wiley Blackwell, vol. 31(3), pages 943-978, July.
    14. José da Fonseca & Martino Grasselli, 2011. "Riding on the smiles," Quantitative Finance, Taylor & Francis Journals, vol. 11(11), pages 1609-1632.
    15. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    16. Ying Jiao & Chunhua Ma & Simone Scotti & Chao Zhou, 2021. "The Alpha‐Heston stochastic volatility model," Post-Print hal-04894037, HAL.
    17. Jiao, Ying & Ma, Chunhua & Scotti, Simone & Sgarra, Carlo, 2019. "A branching process approach to power markets," Energy Economics, Elsevier, vol. 79(C), pages 144-156.
    18. Peter Christoffersen & Steven Heston & Kris Jacobs, 2009. "The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work So Well," Management Science, INFORMS, vol. 55(12), pages 1914-1932, December.
    19. De Col, Alvise & Gnoatto, Alessandro & Grasselli, Martino, 2013. "Smiles all around: FX joint calibration in a multi-Heston model," Journal of Banking & Finance, Elsevier, vol. 37(10), pages 3799-3818.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claudio Fontana & Alessandro Gnoatto & Guillaume Szulda, 2021. "CBI-time-changed Lévy processes for multi-currency modeling," Working Papers 14/2021, University of Verona, Department of Economics.
    2. Claudio Fontana & Alessandro Gnoatto & Guillaume Szulda, 2022. "CBI-time-changed Lévy processes," Working Papers 05/2022, University of Verona, Department of Economics.
    3. Alessandro Gnoatto, 2017. "Coherent Foreign Exchange Market Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-29, February.
    4. Marcos Escobar & Christoph Gschnaidtner, 2018. "A multivariate stochastic volatility model with applications in the foreign exchange market," Review of Derivatives Research, Springer, vol. 21(1), pages 1-43, April.
    5. Iacopo Raffaelli & Simone Scotti & Giacomo Toscano, 2024. "Hawkes-driven stochastic volatility models: goodness-of-fit testing of alternative intensity specifications with S &P500 data," Annals of Operations Research, Springer, vol. 336(1), pages 27-45, May.
    6. Alessandro Gnoatto & Martino Grasselli, 2013. "An analytic multi-currency model with stochastic volatility and stochastic interest rates," Papers 1302.7246, arXiv.org, revised Mar 2013.
    7. Kaeck, Andreas & Seeger, Norman J., 2020. "VIX derivatives, hedging and vol-of-vol risk," European Journal of Operational Research, Elsevier, vol. 283(2), pages 767-782.
    8. Aur'elien Alfonsi & Guillaume Szulda, 2024. "On non-negative solutions of stochastic Volterra equations with jumps and non-Lipschitz coefficients," Papers 2402.19203, arXiv.org, revised Jul 2024.
    9. De Col, Alvise & Gnoatto, Alessandro & Grasselli, Martino, 2013. "Smiles all around: FX joint calibration in a multi-Heston model," Journal of Banking & Finance, Elsevier, vol. 37(10), pages 3799-3818.
    10. Fontana, Claudio & Gnoatto, Alessandro & Szulda, Guillaume, 2023. "CBI-time-changed Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 163(C), pages 323-349.
    11. Ballotta, Laura & Deelstra, Griselda & Rayée, Grégory, 2017. "Multivariate FX models with jumps: Triangles, Quantos and implied correlation," European Journal of Operational Research, Elsevier, vol. 260(3), pages 1181-1199.
    12. Ballotta, Laura & Rayée, Grégory, 2022. "Smiles & smirks: Volatility and leverage by jumps," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1145-1161.
    13. Frikha, Noufel & Li, Libo, 2021. "Well-posedness and approximation of some one-dimensional Lévy-driven non-linear SDEs," Stochastic Processes and their Applications, Elsevier, vol. 132(C), pages 76-107.
    14. Chulmin Kang & Wanmo Kang & Jong Mun Lee, 2017. "Exact Simulation of the Wishart Multidimensional Stochastic Volatility Model," Operations Research, INFORMS, vol. 65(5), pages 1190-1206, October.
    15. Slim, Skander, 2016. "On the source of stochastic volatility: Evidence from CAC40 index options during the subprime crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 63-76.
    16. Yuyang Cheng & Marcos Escobar-Anel & Zhenxian Gong, 2019. "Generalized Mean-Reverting 4/2 Factor Model," JRFM, MDPI, vol. 12(4), pages 1-21, October.
    17. Martino Grasselli, 2017. "The 4/2 Stochastic Volatility Model: A Unified Approach For The Heston And The 3/2 Model," Mathematical Finance, Wiley Blackwell, vol. 27(4), pages 1013-1034, October.
    18. Baldeaux, Jan & Ignatieva, Katja & Platen, Eckhard, 2018. "Detecting money market bubbles," Journal of Banking & Finance, Elsevier, vol. 87(C), pages 369-379.
    19. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2024. "The rough Hawkes Heston stochastic volatility model," Post-Print hal-03827332, HAL.
    20. Ying Jiao & Chunhua Ma & Simone Scotti & Chao Zhou, 2021. "The Alpha‐Heston stochastic volatility model," Mathematical Finance, Wiley Blackwell, vol. 31(3), pages 943-978, July.

    More about this item

    Keywords

    FX market; Multi-currency market; Branching process; Self-exciting process; Time-change; Stochastic volatility; Deep calibration; Affine process;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:336:y:2024:i:1:d:10.1007_s10479-022-04982-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.