IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v335y2024i3d10.1007_s10479-022-04760-x.html
   My bibliography  Save this article

A robust multi-objective model for healthcare resource management and location planning during pandemics

Author

Listed:
  • Levent Eriskin

    (Turkish Naval Academy)

  • Mumtaz Karatas

    (Turkish Naval Academy)

  • Yu-Jun Zheng

    (Hangzhou Normal University)

Abstract

In this study, we consider the problem of healthcare resource management and location planning problem during the early stages of a pandemic/epidemic under demand uncertainty. Our main ambition is to improve the preparedness level and response effectiveness of healthcare authorities in fighting pandemics/epidemics by implementing analytical techniques. Building on lessons from the Chinese experience in the COVID-19 outbreak, we first develop a deterministic multi-objective mixed integer linear program (MILP) which determines the location and size of new pandemic hospitals (strategic level planning), periodic regional health resource re-allocations (tactical level planning) and daily patient-hospital assignments (operational level planning). Taking the forecasted number of cases along a planning horizon as an input, the model minimizes the weighted sum of the number of rejected patients, total travel distance, and installation cost of hospitals subject to real-world constraints and organizational rules. Next, accounting for the uncertainty in the spread speed of the disease, we employ an across scenario robust (ASR) model and reformulate the robust counterpart of the deterministic MILP. The ASR attains relatively more realistic solutions by considering multiple scenarios simultaneously while ensuring a predefined threshold of relative regret for the individual scenarios. Finally, we demonstrate the performance of proposed models on the case of Wuhan, China. Taking the 51 days worth of confirmed COVID-19 case data as an input, we solve both deterministic and robust models and discuss the impact of all three level decisions to the quality and performance of healthcare services during the pandemic. Our case study results show that although it is a challenging task to make strategic level decisions based on uncertain forecasted data, an immediate action can considerably improve the response effectiveness of healthcare authorities. Another important observation is that, the installation times of pandemic hospitals have significant impact on the system performance in fighting with the shortage of beds and facilities.

Suggested Citation

  • Levent Eriskin & Mumtaz Karatas & Yu-Jun Zheng, 2024. "A robust multi-objective model for healthcare resource management and location planning during pandemics," Annals of Operations Research, Springer, vol. 335(3), pages 1471-1518, April.
  • Handle: RePEc:spr:annopr:v:335:y:2024:i:3:d:10.1007_s10479-022-04760-x
    DOI: 10.1007/s10479-022-04760-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04760-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04760-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Savachkin, Alex & Uribe, Andrés, 2012. "Dynamic redistribution of mitigation resources during influenza pandemics," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 33-45.
    2. Charles Revelle & David Marks & Jon C. Liebman, 1970. "An Analysis of Private and Public Sector Location Models," Management Science, INFORMS, vol. 16(11), pages 692-707, July.
    3. Chang Wook Kang & Muhammad Imran & Muhammad Omair & Waqas Ahmed & Misbah Ullah & Biswajit Sarkar, 2019. "Stochastic-Petri Net Modeling and Optimization for Outdoor Patients in Building Sustainable Healthcare System Considering Staff Absenteeism," Mathematics, MDPI, vol. 7(6), pages 1-26, June.
    4. Paul, Jomon A. & Wang, Xinfang (Jocelyn), 2019. "Robust location-allocation network design for earthquake preparedness," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 139-155.
    5. Büyüktahtakın, İ. Esra & des-Bordes, Emmanuel & Kıbış, Eyyüb Y., 2018. "A new epidemics–logistics model: Insights into controlling the Ebola virus disease in West Africa," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1046-1063.
    6. Lihui Bai & Jiang Zhang, 2014. "An incentive-based method for hospital capacity management in a pandemic: the assignment approach," International Journal of Mathematics in Operational Research, Inderscience Enterprises Ltd, vol. 6(4), pages 452-473.
    7. Narula, Subhash C & Ogbu, Ugonnaya I, 1979. "An hierarchal location--allocation problem," Omega, Elsevier, vol. 7(2), pages 137-143.
    8. Azrah Anparasan & Miguel Lejeune, 2019. "Resource deployment and donation allocation for epidemic outbreaks," Annals of Operations Research, Springer, vol. 283(1), pages 9-32, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Umar Farooq & Amjad Hussain & Tariq Masood & Muhammad Salman Habib, 2021. "Supply Chain Operations Management in Pandemics: A State-of-the-Art Review Inspired by COVID-19," Sustainability, MDPI, vol. 13(5), pages 1-33, February.
    2. Maciel M. Queiroz & Dmitry Ivanov & Alexandre Dolgui & Samuel Fosso Wamba, 2022. "Impacts of epidemic outbreaks on supply chains: mapping a research agenda amid the COVID-19 pandemic through a structured literature review," Annals of Operations Research, Springer, vol. 319(1), pages 1159-1196, December.
    3. Xiaoyan Xu & Suresh P. Sethi & Sai‐Ho Chung & Tsan‐Ming Choi, 2023. "Reforming global supply chain management under pandemics: The GREAT‐3Rs framework," Production and Operations Management, Production and Operations Management Society, vol. 32(2), pages 524-546, February.
    4. Yashoda Devi & Sabyasachi Patra & Surya Prakash Singh, 2022. "A location-allocation model for influenza pandemic outbreaks: A case study in India," Operations Management Research, Springer, vol. 15(1), pages 487-502, June.
    5. Choudhury, Nishat Alam & Ramkumar, M. & Schoenherr, Tobias & Singh, Shalabh, 2023. "The role of operations and supply chain management during epidemics and pandemics: Potential and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    6. Muhammad Rahies Khan & Amir Manzoor, 2021. "Application and Impact of New Technologies in the Supply Chain Management During COVID-19 Pandemic: A Systematic Literature Review," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(2), pages 277-292.
    7. Linus Nyiwul, 2021. "Epidemic Control and Resource Allocation: Approaches and Implications for the Management of COVID-19," Studies in Microeconomics, , vol. 9(2), pages 283-305, December.
    8. Lu, Xuefei & Borgonovo, Emanuele, 2023. "Global sensitivity analysis in epidemiological modeling," European Journal of Operational Research, Elsevier, vol. 304(1), pages 9-24.
    9. Biswas, Debajyoti & Alfandari, Laurent, 2022. "Designing an optimal sequence of non‐pharmaceutical interventions for controlling COVID-19," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1372-1391.
    10. P R Harper & S Phillips & J E Gallagher, 2005. "Geographical simulation modelling for the regional planning of oral and maxillofacial surgery across London," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(2), pages 134-143, February.
    11. Govindan, Kannan & Mina, Hassan & Alavi, Behrouz, 2020. "A decision support system for demand management in healthcare supply chains considering the epidemic outbreaks: A case study of coronavirus disease 2019 (COVID-19)," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    12. El Baz, Jamal & Ruel, Salomée, 2021. "Can supply chain risk management practices mitigate the disruption impacts on supply chains’ resilience and robustness? Evidence from an empirical survey in a COVID-19 outbreak era," International Journal of Production Economics, Elsevier, vol. 233(C).
    13. Gong, Jiangyue & Gujjula, Krishna Reddy & Ntaimo, Lewis, 2023. "An integrated chance constraints approach for optimal vaccination strategies under uncertainty for COVID-19," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    14. Darshan Chauhan & Avinash Unnikrishnan & Stephen D. Boyles & Priyadarshan N. Patil, 2024. "Robust maximum flow network interdiction considering uncertainties in arc capacity and resource consumption," Annals of Operations Research, Springer, vol. 335(2), pages 689-725, April.
    15. Zhang, Yuwei & Li, Zhenping & Zhao, Yuwei, 2023. "Multi-mitigation strategies in medical supplies for epidemic outbreaks," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    16. Peiyu Zhang & Yankui Liu & Guoqing Yang & Guoqing Zhang, 2022. "A multi-objective distributionally robust model for sustainable last mile relief network design problem," Annals of Operations Research, Springer, vol. 309(2), pages 689-730, February.
    17. Yang, Senyan & Ning, Lianju & Jiang, Tingfeng & He, Yingqi, 2021. "Dynamic impacts of COVID-19 pandemic on the regional express logistics: Evidence from China," Transport Policy, Elsevier, vol. 111(C), pages 111-124.
    18. Lee, Yu-Ching & Chen, Yu-Shih & Chen, Albert Y., 2022. "Lagrangian dual decomposition for the ambulance relocation and routing considering stochastic demand with the truncated Poisson," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 1-23.
    19. Bilal Farhan & Alan Murray, 2006. "Distance decay and coverage in facility location planning," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 40(2), pages 279-295, June.
    20. Milad Mohammadi & Alibakhsh Nikzad, 2023. "Sustainable and reliable closed-loop supply chain network design during pandemic outbreaks and disruptions," Operations Management Research, Springer, vol. 16(2), pages 969-991, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:335:y:2024:i:3:d:10.1007_s10479-022-04760-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.