IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v330y2023i1d10.1007_s10479-021-03980-x.html
   My bibliography  Save this article

Measures of global sensitivity in linear programming: applications in banking sector

Author

Listed:
  • Mike G. Tsionas

    (Montpellier Business School
    Lancaster University Management School)

  • Dionisis Philippas

    (ESSCA School of Management)

Abstract

The paper examines the sensitivity for the solution of linear programming problems using Bayesian techniques, when samples for the coefficients of the objective function are uncertain. When data is available, we estimate the solution of the linear program and provide statistical measures of uncertainty through the posterior distributions of the solution in the light of the data. When data is not available, these techniques examine the sensitivity of the solution to random variation in the coefficients of the linear problem. The new techniques are based on two posteriors emerging from the inequalities of Karush–Kuhn–Tucker conditions. The first posterior is asymptotic and does not require data. The second posterior is finite-sample-based and is used whenever data is available or if random samples can be drawn from the joint distribution of coefficients. A by-product of our framework is a robust solution. We illustrate the new techniques in two empirical applications to the case of uncertain Data Envelopment Analysis efficiency, involving two large samples, of US commercial banks and a sample of European commercial banks regulated by the Single Supervisory Mechanism. We analyse whether some pre-determined criteria, associated with size and new supervisory framework, can adequately affect the solution of linear program. The results provide evidence of substantial improvements in statistical structure with respect to sensitivities and robustification. Our methodology can serve as a consistency check of the statistical inference for the solution of linear programming problems in efficiency under uncertainty in data.

Suggested Citation

  • Mike G. Tsionas & Dionisis Philippas, 2023. "Measures of global sensitivity in linear programming: applications in banking sector," Annals of Operations Research, Springer, vol. 330(1), pages 585-607, November.
  • Handle: RePEc:spr:annopr:v:330:y:2023:i:1:d:10.1007_s10479-021-03980-x
    DOI: 10.1007/s10479-021-03980-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-03980-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-03980-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tziogkidis, Panagiotis & Philippas, Dionisis & Tsionas, Mike G., 2020. "Multidirectional conditional convergence in European banking," Journal of Economic Behavior & Organization, Elsevier, vol. 173(C), pages 88-106.
    2. Shi, Xiaoxia & Shum, Matthew, 2015. "Simple Two-Stage Inference For A Class Of Partially Identified Models," Econometric Theory, Cambridge University Press, vol. 31(3), pages 493-520, June.
    3. N. Ravi & Richard E. Wendell, 1989. "The Tolerance Approach to Sensitivity Analysis of Matrix Coefficients in Linear Programming," Management Science, INFORMS, vol. 35(9), pages 1106-1119, September.
    4. Bauwens, Luc & Bos, Charles S. & van Dijk, Herman K. & van Oest, Rutger D., 2004. "Adaptive radial-based direction sampling: some flexible and robust Monte Carlo integration methods," Journal of Econometrics, Elsevier, vol. 123(2), pages 201-225, December.
    5. Harvey M. Wagner, 1995. "Global Sensitivity Analysis," Operations Research, INFORMS, vol. 43(6), pages 948-969, December.
    6. Asmild, Mette & Matthews, Kent, 2012. "Multi-directional efficiency analysis of efficiency patterns in Chinese banks 1997–2008," European Journal of Operational Research, Elsevier, vol. 219(2), pages 434-441.
    7. Kim, Jae-Young, 2002. "Limited information likelihood and Bayesian analysis," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 175-193, March.
    8. Ehrgott, Matthias & Holder, Allen & Nohadani, Omid, 2018. "Uncertain Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 268(1), pages 231-242.
    9. Sealey, Calvin W, Jr & Lindley, James T, 1977. "Inputs, Outputs, and a Theory of Production and Cost at Depository Financial Institutions," Journal of Finance, American Finance Association, vol. 32(4), pages 1251-1266, September.
    10. Acharya, Viral & Engle, Robert & Pierret, Diane, 2014. "Testing macroprudential stress tests: The risk of regulatory risk weights," Journal of Monetary Economics, Elsevier, vol. 65(C), pages 36-53.
    11. Richard E. Wendell, 1985. "The Tolerance Approach to Sensitivity Analysis in Linear Programming," Management Science, INFORMS, vol. 31(5), pages 564-578, May.
    12. Gallant, A. Ronald & Giacomini, Raffaella & Ragusa, Giuseppe, 2017. "Bayesian estimation of state space models using moment conditions," Journal of Econometrics, Elsevier, vol. 201(2), pages 198-211.
    13. Fukuyama, Hirofumi & Matousek, Roman, 2017. "Modelling bank performance: A network DEA approach," European Journal of Operational Research, Elsevier, vol. 259(2), pages 721-732.
    14. Wolak, Frank A., 1989. "Testing inequality constraints in linear econometric models," Journal of Econometrics, Elsevier, vol. 41(2), pages 205-235, June.
    15. Khai Xiang Chiong & Alfred Galichon & Matt Shum, 2016. "Duality in dynamic discrete‐choice models," Quantitative Economics, Econometric Society, vol. 7(1), pages 83-115, March.
    16. Emir Malikov & Subal C. Kumbhakar & Mike G. Tsionas, 2016. "A Cost System Approach to the Stochastic Directional Technology Distance Function with Undesirable Outputs: The Case of us Banks in 2001–2010," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1407-1429, November.
    17. Marvin D. Troutt & Wan-Kai Pang & Shui-Hung Hou, 2006. "Behavioral Estimation of Mathematical Programming Objective Function Coefficients," Management Science, INFORMS, vol. 52(3), pages 422-434, March.
    18. Borgonovo, Emanuele & Buzzard, Gregery T. & Wendell, Richard E., 2018. "A global tolerance approach to sensitivity analysis in linear programming," European Journal of Operational Research, Elsevier, vol. 267(1), pages 321-337.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dan Li & Yanfeng Li & Yeming Gong & Jiawei Yang, 2021. "Estimation of bank performance from multiple perspectives: an alternative solution to the deposit dilemma," Journal of Productivity Analysis, Springer, vol. 56(2), pages 151-170, December.
    2. Curry, Stewart & Lee, Ilbin & Ma, Simin & Serban, Nicoleta, 2022. "Global sensitivity analysis via a statistical tolerance approach," European Journal of Operational Research, Elsevier, vol. 296(1), pages 44-59.
    3. Chen, Zhongfei & Matousek, Roman & Wanke, Peter, 2018. "Chinese bank efficiency during the global financial crisis: A combined approach using satisficing DEA and Support Vector Machines☆," The North American Journal of Economics and Finance, Elsevier, vol. 43(C), pages 71-86.
    4. Tziogkidis, Panagiotis & Philippas, Dionisis, 2024. "Regulatory profiling and endogenous benchmarking," International Review of Financial Analysis, Elsevier, vol. 96(PA).
    5. Hsieh, Yu-Wei & Shi, Xiaoxia & Shum, Matthew, 2022. "Inference on estimators defined by mathematical programming," Journal of Econometrics, Elsevier, vol. 226(2), pages 248-268.
    6. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    7. Tziogkidis, Panagiotis & Philippas, Dionisis & Tsionas, Mike G., 2020. "Multidirectional conditional convergence in European banking," Journal of Economic Behavior & Organization, Elsevier, vol. 173(C), pages 88-106.
    8. Dionisis Philippas & Catalin Dragomirescu-Gaina & Alexandros Leontitsis & Stephanos Papadamou, 2023. "Built-in challenges within the supervisory architecture of the Eurozone," Journal of Banking Regulation, Palgrave Macmillan, vol. 24(1), pages 15-39, March.
    9. Borgonovo, Emanuele & Buzzard, Gregery T. & Wendell, Richard E., 2018. "A global tolerance approach to sensitivity analysis in linear programming," European Journal of Operational Research, Elsevier, vol. 267(1), pages 321-337.
    10. Phung, Manh-Trung & Cheng, Cheng-Ping & Guo, Chuanyin & Kao, Chen-Yu, 2020. "Mixed Network DEA with Shared Resources: A Case of Measuring Performance for Banking Industry," Operations Research Perspectives, Elsevier, vol. 7(C).
    11. Yasufumi Gemma & Takushi Kurozumi & Mototsugu Shintani, 2023. "Trend Inflation and Evolving Inflation Dynamics:A Bayesian GMM Analysis," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 51, pages 506-520, December.
    12. Mike G. Tsionas, 2017. "“When, Where, and How” of Efficiency Estimation: Improved Procedures for Stochastic Frontier Modeling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 948-965, July.
    13. Delis, Manthos D. & Iosifidi, Maria & Tsionas, Mike, 2020. "Management estimation in banking," European Journal of Operational Research, Elsevier, vol. 284(1), pages 355-372.
    14. Nisar Ahmad & Amjad Naveed & Shabbir Ahmad & Irfan Butt, 2020. "Banking Sector Performance, Profitability, And Efficiency: A Citation‐Based Systematic Literature Review," Journal of Economic Surveys, Wiley Blackwell, vol. 34(1), pages 185-218, February.
    15. Richard E. Wendell, 2004. "Tolerance Sensitivity and Optimality Bounds in Linear Programming," Management Science, INFORMS, vol. 50(6), pages 797-803, June.
    16. Curi, Claudia & Lozano-Vivas, Ana, 2020. "Managerial ability as a tool for prudential regulation," Journal of Economic Behavior & Organization, Elsevier, vol. 174(C), pages 87-107.
    17. Marmol, A. M. & Puerto, J., 1997. "Special cases of the tolerance approach in multiobjective linear programming," European Journal of Operational Research, Elsevier, vol. 98(3), pages 610-616, May.
    18. Matthews, Kent & Xiao, Zhiguo, 2020. "Rational cost inefficiency and convergence in Chinese banks," Economic Modelling, Elsevier, vol. 91(C), pages 696-704.
    19. Pereira Borges, Ana Rosa & Henggeler Antunes, Carlos, 2002. "A visual interactive tolerance approach to sensitivity analysis in MOLP," European Journal of Operational Research, Elsevier, vol. 142(2), pages 357-381, October.
    20. Carmelo Algeri & Luc Anselin & Antonio Fabio Forgione & Carlo Migliardo, 2022. "Spatial dependence in the technical efficiency of local banks," Papers in Regional Science, Wiley Blackwell, vol. 101(3), pages 685-716, June.

    More about this item

    Keywords

    Bayesian techniques; Global sensitivity; Data uncertainty; Data envelopment analysis;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:330:y:2023:i:1:d:10.1007_s10479-021-03980-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.