Author
Abstract
In applications of operations research models, decision makers must assess the sensitivity of outputs to imprecise values for some of the model's parameters. Existing analytic approaches for classic optimization models rely heavily on duality properties for assessing the impact of local parameter variations, parametric programming for examining systematic variations in model coefficients, or stochastic programming for ascertaining a robust solution. This paper accommodates extensive simultaneous variations in any of an operations research model's parameters. For constrained optimization models, the paper demonstrates practical approaches for determining relative parameter sensitivity with respect to a model's optimal objective function value, decision variables, and other analytic functions of a solution. Relative sensitivity is assessed by assigning a portion of variation in an output value to each parameter that is imprecisely specified. The computing steps encompass optimization, Monte Carlo sampling, and statistical analyses, in addition to model specification. The required computations can be achieved with commercially available off-the-shelf software available for microcomputers and other platforms. The paper uses a broad set of test models to demonstrate the merit of the approaches. The results are easily put to use by a practitioner. The paper also outlines further research developments to extend the applicability of the approaches.
Suggested Citation
Harvey M. Wagner, 1995.
"Global Sensitivity Analysis,"
Operations Research, INFORMS, vol. 43(6), pages 948-969, December.
Handle:
RePEc:inm:oropre:v:43:y:1995:i:6:p:948-969
DOI: 10.1287/opre.43.6.948
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:43:y:1995:i:6:p:948-969. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.