IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v319y2022i2d10.1007_s10479-020-03892-2.html
   My bibliography  Save this article

Solving a bi-objective unmanned aircraft system location-allocation problem

Author

Listed:
  • Mumtaz Karatas

    (Naval Academy)

  • Ertan Yakıcı

    (Naval Academy)

  • Abdullah Dasci

    (Sabanci University)

Abstract

In this paper we introduce a bi-objective location-allocation problem for Unmanned Aircraft Systems (UASs) operating in a hostile environment. The objective is to find the locations to deploy UASs and assign Unmanned Aerial Vehicles to regions for surveillance. One of the objectives is to maximize search effectiveness, while the second is the minimization of the threats posed to the UASs. These two objectives are in conflict, because they are affected differently by the proximity between the UAS locations and the target regions. First, we have formulated this problem as a mixed integer nonlinear program. Next, we have developed its linearization which can be solved by a commercial optimizer for small-scale problem instances. To solve large-scale problems, we have adopted a well-known metaheuristic for multi-objective problems, namely the elitist non-dominated sorting genetic algorithm. We have also developed a hybrid approach, which has proven to be more effective than each approach alone.

Suggested Citation

  • Mumtaz Karatas & Ertan Yakıcı & Abdullah Dasci, 2022. "Solving a bi-objective unmanned aircraft system location-allocation problem," Annals of Operations Research, Springer, vol. 319(2), pages 1631-1654, December.
  • Handle: RePEc:spr:annopr:v:319:y:2022:i:2:d:10.1007_s10479-020-03892-2
    DOI: 10.1007/s10479-020-03892-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-020-03892-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-020-03892-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brian J. Lunday & Hanif D. Sherali & Theodore S. Glickman, 2010. "The Nested Event Tree Model with Application to Combating Terrorism," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 620-634, November.
    2. Kjell Hausken, 2011. "Protecting complex infrastructures against multiple strategic attackers," International Journal of Systems Science, Taylor & Francis Journals, vol. 42(1), pages 11-29.
    3. Onggo, Bhakti Stephan & Karatas, Mumtaz, 2016. "Test-driven simulation modelling: A case study using agent-based maritime search-operation simulation," European Journal of Operational Research, Elsevier, vol. 254(2), pages 517-531.
    4. Hanif D. Sherali & Evrim Dalkiran & Theodore S. Glickman, 2011. "Selecting Optimal Alternatives and Risk Reduction Strategies in Decision Trees," Operations Research, INFORMS, vol. 59(3), pages 631-647, June.
    5. John E. Bell & Stanley E. Griffis, 2015. "Military Applications of Location Analysis," International Series in Operations Research & Management Science, in: H. A. Eiselt & Vladimir Marianov (ed.), Applications of Location Analysis, edition 1, chapter 17, pages 403-433, Springer.
    6. Emily M. Craparo & Mumtaz Karatas & Tobias U. Kuhn, 2017. "Sensor placement in active multistatic sonar networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(4), pages 287-304, June.
    7. Jenelius, Erik & Westin, Jonas & Holmgren, Åke J., 2010. "Critical infrastructure protection under imperfect attacker perception," International Journal of Critical Infrastructure Protection, Elsevier, vol. 3(1), pages 16-26.
    8. Bell, John E. & Griffis, Stanley E. & Cunningham III, William A. & Eberlan, Jon A., 2011. "Location optimization of strategic alert sites for homeland defense," Omega, Elsevier, vol. 39(2), pages 151-158, April.
    9. Benati, Stefano & Hansen, Pierre, 2002. "The maximum capture problem with random utilities: Problem formulation and algorithms," European Journal of Operational Research, Elsevier, vol. 143(3), pages 518-530, December.
    10. Craparo, Emily M. & Fügenschuh, Armin & Hof, Christoph & Karatas, Mumtaz, 2019. "Optimizing source and receiver placement in multistatic sonar networks to monitor fixed targets," European Journal of Operational Research, Elsevier, vol. 272(3), pages 816-831.
    11. Carlos Barros & Isabel Proença, 2005. "Mixed Logit Estimation Of Radical Islamic Terrorism In Europe And North America: A Comparative Study," Microeconomics 0508005, University Library of Munich, Germany.
    12. Hanif D. Sherali & Jitamitra Desai & Theodore S. Glickman, 2008. "Optimal Allocation of Risk-Reduction Resources in Event Trees," Management Science, INFORMS, vol. 54(7), pages 1313-1321, July.
    13. Edouard Kujawski, 2015. "Accounting for Terrorist Behavior in Allocating Defensive Counterterrorism Resources," Systems Engineering, John Wiley & Sons, vol. 18(4), pages 365-376, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emily Craparo & Mumtaz Karatas, 2020. "Optimal source placement for point coverage in active multistatic sonar networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(1), pages 63-74, February.
    2. Edouard Kujawski, 2016. "A Probabilistic Game‐Theoretic Method to Assess Deterrence and Defense Benefits of Security Systems," Systems Engineering, John Wiley & Sons, vol. 19(6), pages 549-566, November.
    3. Zuo, Fei & Zio, Enrico & Xu, Yue, 2023. "Bi-objective optimization of the scheduling of risk-related resources for risk response," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    4. Olive Emil Wetter & Valentino Wüthrich, 2015. "“What is dear to you?” Survey of beliefs regarding protection of critical infrastructure against terrorism," Defense & Security Analysis, Taylor & Francis Journals, vol. 31(3), pages 185-198, September.
    5. Chen Wang & Vicki M. Bier, 2013. "Expert Elicitation of Adversary Preferences Using Ordinal Judgments," Operations Research, INFORMS, vol. 61(2), pages 372-385, April.
    6. Han, Lin & Zhao, Xudong & Chen, Zhilong & Wu, Yipeng & Su, Xiaochao & Zhang, Ning, 2021. "Optimal allocation of defensive resources to defend urban power networks against different types of attackers," International Journal of Critical Infrastructure Protection, Elsevier, vol. 35(C).
    7. Freire, Alexandre S. & Moreno, Eduardo & Yushimito, Wilfredo F., 2016. "A branch-and-bound algorithm for the maximum capture problem with random utilities," European Journal of Operational Research, Elsevier, vol. 252(1), pages 204-212.
    8. Zhang, Chi & Ramirez-Marquez, José Emmanuel & Wang, Jianhui, 2015. "Critical infrastructure protection using secrecy – A discrete simultaneous game," European Journal of Operational Research, Elsevier, vol. 242(1), pages 212-221.
    9. Frick, Bernd & Barros, Carlos Pestana & Prinz, Joachim, 2010. "Analysing head coach dismissals in the German "Bundesliga" with a mixed logit approach," European Journal of Operational Research, Elsevier, vol. 200(1), pages 151-159, January.
    10. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2022. "Submodularity and local search approaches for maximum capture problems under generalized extreme value models," European Journal of Operational Research, Elsevier, vol. 300(3), pages 953-965.
    11. S Rezapour & R Zanjirani Farahani & T Drezner, 2011. "Strategic design of competing supply chain networks for inelastic demand," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(10), pages 1784-1795, October.
    12. A. James Wynne & Chandrashekar Challa & John Palesis & Bernie Farkas, 2015. "A Conceptual Model: Impact Of Usage Of Social Media Tools To Enhance Project Management Success," Portuguese Journal of Management Studies, ISEG, Universidade de Lisboa, vol. 0(2), pages 55-72.
    13. Mohamad Darayi & Kash Barker & Joost R. Santos, 2017. "Component Importance Measures for Multi-Industry Vulnerability of a Freight Transportation Network," Networks and Spatial Economics, Springer, vol. 17(4), pages 1111-1136, December.
    14. Küçükaydin, Hande & Aras, Necati & Kuban AltInel, I., 2011. "Competitive facility location problem with attractiveness adjustment of the follower: A bilevel programming model and its solution," European Journal of Operational Research, Elsevier, vol. 208(3), pages 206-220, February.
    15. Jian Zhou & Kexin Xu & Yuxiu Zhao & Haoran Zheng & Zhengnan Dong, 2021. "Hub-and-Spoke Logistics Network Considering Pricing and Co-Opetition," Sustainability, MDPI, vol. 13(17), pages 1-21, September.
    16. Jürges Hendrik & Westermaier Franz G., 2020. "Conflict Intensity and Birth Outcomes – Evidence from the West Bank," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 20(2), pages 1-8, April.
    17. Khakzad, Nima, 2021. "Optimal firefighting to prevent domino effects: Methodologies based on dynamic influence diagram and mathematical programming," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    18. Bricha, Naji & Nourelfath, Mustapha, 2014. "Extra-capacity versus protection for supply networks under attack," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 185-196.
    19. Chi Zhang & Jose Ramirez-Marquez, 2013. "Protecting critical infrastructures against intentional attacks: a two-stage game with incomplete information," IISE Transactions, Taylor & Francis Journals, vol. 45(3), pages 244-258.
    20. Wu, Baichao & Tang, Aiping & Wu, Jie, 2016. "Modeling cascading failures in interdependent infrastructures under terrorist attacks," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 1-8.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:319:y:2022:i:2:d:10.1007_s10479-020-03892-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.