IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v59y2011i3p631-647.html
   My bibliography  Save this article

Selecting Optimal Alternatives and Risk Reduction Strategies in Decision Trees

Author

Listed:
  • Hanif D. Sherali

    (Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061)

  • Evrim Dalkiran

    (Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061)

  • Theodore S. Glickman

    (Department of Decision Sciences, The George Washington University, Washington, DC 20052)

Abstract

In this paper we conduct a quantitative analysis for a strategic risk management problem that involves allocating certain available failure-mitigating and consequence-alleviating resources to reduce the failure probabilities of system safety components and subsequent losses, respectively, together with selecting optimal strategic decision alternatives, to minimize the risk or expected loss in the event of a hazardous occurrence. Using a novel decision tree optimization approach to represent the cascading sequences of probabilistic events as controlled by key decisions and investment alternatives, the problem is modeled as a nonconvex mixed-integer 0-1 factorable program. We develop a specialized branch-and-bound algorithm in which lower bounds are computed via tight linear relaxations of the original problem that are constructed by utilizing a polyhedral outer-approximation mechanism in concert with two alternative linearization schemes having different levels of tightness and complexity. We also suggest three alternative branching schemes, each of which is proven to guarantee convergence to a global optimum for the underlying problem. Extensive computational results and sensitivity analyses are presented to provide insights and to demonstrate the efficacy of the proposed algorithm.

Suggested Citation

  • Hanif D. Sherali & Evrim Dalkiran & Theodore S. Glickman, 2011. "Selecting Optimal Alternatives and Risk Reduction Strategies in Decision Trees," Operations Research, INFORMS, vol. 59(3), pages 631-647, June.
  • Handle: RePEc:inm:oropre:v:59:y:2011:i:3:p:631-647
    DOI: 10.1287/opre.1110.0923
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1110.0923
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1110.0923?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    2. Andrzej Ruszczyński & Alexander Shapiro, 2006. "Optimization of Convex Risk Functions," Mathematics of Operations Research, INFORMS, vol. 31(3), pages 433-452, August.
    3. John M. Mulvey & Robert J. Vanderbei & Stavros A. Zenios, 1995. "Robust Optimization of Large-Scale Systems," Operations Research, INFORMS, vol. 43(2), pages 264-281, April.
    4. Hanif D. Sherali & Jitamitra Desai & Theodore S. Glickman, 2008. "Optimal Allocation of Risk-Reduction Resources in Event Trees," Management Science, INFORMS, vol. 54(7), pages 1313-1321, July.
    5. Robin L. Dillon & M. Elisabeth Paté-Cornell & Seth D. Guikema, 2003. "Programmatic Risk Analysis for Critical Engineering Systems Under Tight Resource Constraints," Operations Research, INFORMS, vol. 51(3), pages 354-370, June.
    6. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mark Turnquist & Eric Vugrin, 2013. "Design for resilience in infrastructure distribution networks," Environment Systems and Decisions, Springer, vol. 33(1), pages 104-120, March.
    2. Jing Ai & Patrick L. Brockett & Tianyang Wang, 2017. "Optimal Enterprise Risk Management and Decision Making With Shared and Dependent Risks," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(4), pages 1127-1169, December.
    3. Dadsena, Krishna Kumar & Sarmah, S.P. & Naikan, V.N.A. & Jena, Sarat Kumar, 2019. "Optimal budget allocation for risk mitigation strategy in trucking industry: An integrated approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 37-55.
    4. Zuo, Fei & Zio, Enrico & Xu, Yue, 2023. "Bi-objective optimization of the scheduling of risk-related resources for risk response," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    5. Eman Ismail & Yasser Tawfik Halim & Mohamed Samy EL-Deeb, 2023. "Corporate reputation and shareholder investment: a study of Egypt's tourism listed companies," Future Business Journal, Springer, vol. 9(1), pages 1-15, December.
    6. Mumtaz Karatas & Ertan Yakıcı & Abdullah Dasci, 2022. "Solving a bi-objective unmanned aircraft system location-allocation problem," Annals of Operations Research, Springer, vol. 319(2), pages 1631-1654, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William B. Haskell & Wenjie Huang & Huifu Xu, 2018. "Preference Elicitation and Robust Optimization with Multi-Attribute Quasi-Concave Choice Functions," Papers 1805.06632, arXiv.org.
    2. Miller, Naomi & Ruszczynski, Andrzej, 2008. "Risk-adjusted probability measures in portfolio optimization with coherent measures of risk," European Journal of Operational Research, Elsevier, vol. 191(1), pages 193-206, November.
    3. Aharon Ben-Tal & Dimitris Bertsimas & David B. Brown, 2010. "A Soft Robust Model for Optimization Under Ambiguity," Operations Research, INFORMS, vol. 58(4-part-2), pages 1220-1234, August.
    4. R. I. Boţ & N. Lorenz & G. Wanka, 2010. "Dual Representations for Convex Risk Measures via Conjugate Duality," Journal of Optimization Theory and Applications, Springer, vol. 144(2), pages 185-203, February.
    5. Bellini, Fabio & Rosazza Gianin, Emanuela, 2008. "On Haezendonck risk measures," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 986-994, June.
    6. Daniel Lacker, 2018. "Liquidity, Risk Measures, and Concentration of Measure," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 813-837, August.
    7. Samuel Drapeau & Michael Kupper, 2013. "Risk Preferences and Their Robust Representation," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 28-62, February.
    8. Drew P. Kouri & Thomas M. Surowiec, 2020. "Epi-Regularization of Risk Measures," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 774-795, May.
    9. Knispel, Thomas & Laeven, Roger J.A. & Svindland, Gregor, 2016. "Robust optimal risk sharing and risk premia in expanding pools," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 182-195.
    10. Georg Pflug & Nancy Wozabal, 2010. "Asymptotic distribution of law-invariant risk functionals," Finance and Stochastics, Springer, vol. 14(3), pages 397-418, September.
    11. Balbás, Alejandro, 2008. "Capital requirements: Are they the best solution?," DEE - Working Papers. Business Economics. WB wb087114, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    12. Zou, Zhenfeng & Wu, Qinyu & Xia, Zichao & Hu, Taizhong, 2023. "Adjusted Rényi entropic Value-at-Risk," European Journal of Operational Research, Elsevier, vol. 306(1), pages 255-268.
    13. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    14. Balbás, Alejandro & Balbás, Beatriz & Balbás, Raquel, 2010. "CAPM and APT-like models with risk measures," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1166-1174, June.
    15. Martin Herdegen & Nazem Khan, 2022. "$\rho$-arbitrage and $\rho$-consistent pricing for star-shaped risk measures," Papers 2202.07610, arXiv.org, revised Feb 2024.
    16. Jun-ya Gotoh & Stan Uryasev, 2017. "Support vector machines based on convex risk functions and general norms," Annals of Operations Research, Springer, vol. 249(1), pages 301-328, February.
    17. Roger J. A. Laeven & Emanuela Rosazza Gianin, 2022. "Quasi-Logconvex Measures of Risk," Papers 2208.07694, arXiv.org.
    18. Elisa Mastrogiacomo & Emanuela Rosazza Gianin, 2015. "Portfolio Optimization with Quasiconvex Risk Measures," Mathematics of Operations Research, INFORMS, vol. 40(4), pages 1042-1059, October.
    19. Balbás, Alejandro & Balbás, Raquel, 2009. "Compatibility between pricing rules and risk measures: the CCVaR," DEE - Working Papers. Business Economics. WB wb090201, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    20. Gabriele Torri & Rosella Giacometti & Darinka Dentcheva & Svetlozar T. Rachev & W. Brent Lindquist, 2023. "ESG-coherent risk measures for sustainable investing," Papers 2309.05866, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:59:y:2011:i:3:p:631-647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.