IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v318y2022i1d10.1007_s10479-022-04831-z.html
   My bibliography  Save this article

Care process optimization in a cardiovascular hospital: an integration of simulation–optimization and data mining

Author

Listed:
  • Masoumeh Vali

    (Persian Gulf University)

  • Khodakaram Salimifard

    (Persian Gulf University)

  • Amir H. Gandomi

    (University of Technology Sydney)

  • Thierry J. Chaussalet

    (University of Westminster)

Abstract

To provide health services, hospitals consume electrical power and contribute to the CO2 emission. This paper aims to develop a modelling approach to optimize hospital services while reducing CO2 emissions. To capture treatment processes and the production of carbon dioxide, a hybrid method of data mining and simulation–optimization techniques is proposed. Different clustering algorithms are used to categorize patients. Using quality indicators, clustering methods are evaluated to find the best cluster sets, and then patients are categorized accordingly. Discrete-event simulation is applied to each patient category to estimate performance measures such as number of patients being served, waiting times, and length of stay, as well as the amount of CO2 emission. To optimize performance measures of patient flow, metaheuristic searches have been used. The dataset of Bushehr Heart Hospital is considered as a case study. Based on K-means, K-medoid, Hierarchical clustering, and Fuzzy C-means clustering methods, patients are categorized into two groups of high-risk and low-risk patients. The number of patients being served, total waiting time, length of stay, and CO2 emitted during care processes are improved for both groups. The proposed hybrid method is an effective method for hospitals to categorize patients based on care processes. The problems and the proposed solution approach reported in this study could be applicable to other hospitals, worldwide to help both optimize the patient flow and minimize the environmental consequences of care services.

Suggested Citation

  • Masoumeh Vali & Khodakaram Salimifard & Amir H. Gandomi & Thierry J. Chaussalet, 2022. "Care process optimization in a cardiovascular hospital: an integration of simulation–optimization and data mining," Annals of Operations Research, Springer, vol. 318(1), pages 685-712, November.
  • Handle: RePEc:spr:annopr:v:318:y:2022:i:1:d:10.1007_s10479-022-04831-z
    DOI: 10.1007/s10479-022-04831-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04831-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04831-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Md Asaduzzaman & Thierry Chaussalet & Nicola Robertson, 2010. "A loss network model with overflow for capacity planning of a neonatal unit," Annals of Operations Research, Springer, vol. 178(1), pages 67-76, July.
    2. R. B. Fetter & J. D. Thompson, 1965. "The Simulation of Hospital Systems," Operations Research, INFORMS, vol. 13(5), pages 689-711, October.
    3. Matthew J Eckelman & Jodi Sherman, 2016. "Environmental Impacts of the U.S. Health Care System and Effects on Public Health," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-14, June.
    4. Satyajith Amaran & Nikolaos V. Sahinidis & Bikram Sharda & Scott J. Bury, 2016. "Simulation optimization: a review of algorithms and applications," Annals of Operations Research, Springer, vol. 240(1), pages 351-380, May.
    5. Fermín Mallor & Cristina Azcárate, 2014. "Combining optimization with simulation to obtain credible models for intensive care units," Annals of Operations Research, Springer, vol. 221(1), pages 255-271, October.
    6. David J. Hand & Heikki Mannila & Padhraic Smyth, 2001. "Principles of Data Mining," MIT Press Books, The MIT Press, edition 1, volume 1, number 026208290x, December.
    7. Andres F. Osorio & Sally C. Brailsford & Honora K. Smith & Sonia P. Forero-Matiz & Bernardo A. Camacho-Rodríguez, 2017. "Simulation-optimization model for production planning in the blood supply chain," Health Care Management Science, Springer, vol. 20(4), pages 548-564, December.
    8. Hui Zhang & Thomas J. Best & Anton Chivu & David O. Meltzer, 2020. "Simulation-based optimization to improve hospital patient assignment to physicians and clinical units," Health Care Management Science, Springer, vol. 23(1), pages 117-141, March.
    9. Frumkin, H. & Hess, J. & Luber, G. & Malilay, J. & McGeehin, M., 2008. "Climate change: The public health response," American Journal of Public Health, American Public Health Association, vol. 98(3), pages 435-445.
    10. Matthew J Eckelman & Jodi D Sherman & Andrea J MacNeill, 2018. "Life cycle environmental emissions and health damages from the Canadian healthcare system: An economic-environmental-epidemiological analysis," PLOS Medicine, Public Library of Science, vol. 15(7), pages 1-16, July.
    11. Abo-Hamad, Waleed & Arisha, Amr, 2013. "Simulation-based framework to improve patient experience in an emergency department," European Journal of Operational Research, Elsevier, vol. 224(1), pages 154-166.
    12. Lin, Rung-Chuan & Sir, Mustafa Y. & Pasupathy, Kalyan S., 2013. "Multi-objective simulation optimization using data envelopment analysis and genetic algorithm: Specific application to determining optimal resource levels in surgical services," Omega, Elsevier, vol. 41(5), pages 881-892.
    13. Absi, Nabil & Dauzère-Pérès, Stéphane & Kedad-Sidhoum, Safia & Penz, Bernard & Rapine, Christophe, 2013. "Lot sizing with carbon emission constraints," European Journal of Operational Research, Elsevier, vol. 227(1), pages 55-61.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hensher, Martin & Canny, Ben & Zimitat, Craig & Campbell, Julie & Palmer, Andrew, 2020. "Health care, overconsumption and uneconomic growth: A conceptual framework," Social Science & Medicine, Elsevier, vol. 266(C).
    2. Yuta Kanai & Hideaki Takagi, 2021. "Markov chain analysis for the neonatal inpatient flow in a hospital," Health Care Management Science, Springer, vol. 24(1), pages 92-116, March.
    3. Willoughby, Keith A. & Chan, Benjamin T.B. & Marques, Shauna, 2016. "Using simulation to test ideas for improving speech language pathology services," European Journal of Operational Research, Elsevier, vol. 252(2), pages 657-664.
    4. Turan, Hasan Hüseyin & Jalalvand, Fatemeh & Elsawah, Sondoss & Ryan, Michael J., 2022. "A joint problem of strategic workforce planning and fleet renewal: With an application in defense," European Journal of Operational Research, Elsevier, vol. 296(2), pages 615-634.
    5. Josephine Varney & Nigel Bean & Mark Mackay, 2019. "The self-regulating nature of occupancy in ICUs: stochastic homoeostasis," Health Care Management Science, Springer, vol. 22(4), pages 615-634, December.
    6. Fermín Mallor & Cristina Azcárate & Julio Barado, 2016. "Control problems and management policies in health systems: application to intensive care units," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 62-89, June.
    7. Hainan Guo & Haobin Gu & Yu Zhou & Jiaxuan Peng, 2022. "A data-driven multi-fidelity simulation optimization for medical staff configuration at an emergency department in Hong Kong," Flexible Services and Manufacturing Journal, Springer, vol. 34(2), pages 238-262, June.
    8. Yong-Hong Kuo & Omar Rado & Benedetta Lupia & Janny M. Y. Leung & Colin A. Graham, 2016. "Improving the efficiency of a hospital emergency department: a simulation study with indirectly imputed service-time distributions," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 120-147, June.
    9. Azcarate, Cristina & Esparza, Laida & Mallor, Fermin, 2020. "The problem of the last bed: Contextualization and a new simulation framework for analyzing physician decisions," Omega, Elsevier, vol. 96(C).
    10. Alexander Cimprich & Steven B. Young, 2023. "Environmental footprinting of hospitals: Organizational life cycle assessment of a Canadian hospital," Journal of Industrial Ecology, Yale University, vol. 27(5), pages 1335-1353, October.
    11. Noordhoek, Marije & Dullaert, Wout & Lai, David S.W. & de Leeuw, Sander, 2018. "A simulation–optimization approach for a service-constrained multi-echelon distribution network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 292-311.
    12. Jonathan E. Suk & Kristie L. Ebi & David Vose & Willy Wint & Neil Alexander & Koen Mintiens & Jan C. Semenza, 2014. "Indicators for Tracking European Vulnerabilities to the Risks of Infectious Disease Transmission due to Climate Change," IJERPH, MDPI, vol. 11(2), pages 1-18, February.
    13. Stephanie E. Austin & Robbert Biesbroek & Lea Berrang-Ford & James D. Ford & Stephen Parker & Manon D. Fleury, 2016. "Public Health Adaptation to Climate Change in OECD Countries," IJERPH, MDPI, vol. 13(9), pages 1-20, September.
    14. Melissa Matlock & Suellen Hopfer & Oladele A. Ogunseitan, 2019. "Communicating Risk for a Climate-Sensitive Disease: A Case Study of Valley Fever in Central California," IJERPH, MDPI, vol. 16(18), pages 1-15, September.
    15. Battini, Daria & Glock, Christoph H. & Grosse, Eric H. & Persona, Alessandro & Sgarbossa, Fabio, 2017. "Reprint of “Ergo-lot-sizing: An approach to integrate ergonomic and economic objectives in manual materials handling”," International Journal of Production Economics, Elsevier, vol. 194(C), pages 32-42.
    16. Huo, Jinbiao & Liu, Chengqi & Chen, Jingxu & Meng, Qiang & Wang, Jian & Liu, Zhiyuan, 2023. "Simulation-based dynamic origin–destination matrix estimation on freeways: A Bayesian optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    17. Chang, Kuo-Hao & Kuo, Po-Yi, 2018. "An efficient simulation optimization method for the generalized redundancy allocation problem," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1094-1101.
    18. Jaime González & Juan-Carlos Ferrer & Alejandro Cataldo & Luis Rojas, 2019. "A proactive transfer policy for critical patient flow management," Health Care Management Science, Springer, vol. 22(2), pages 287-303, June.
    19. Fernandez del Pozo, J. A. & Bielza, C. & Gomez, M., 2005. "A list-based compact representation for large decision tables management," European Journal of Operational Research, Elsevier, vol. 160(3), pages 638-662, February.
    20. Le, Hong Hanh & Viviani, Jean-Laurent, 2018. "Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios," Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:318:y:2022:i:1:d:10.1007_s10479-022-04831-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.